Systematic trends in total-mass profiles from dynamical models of early-type galaxies
Untangling galaxy components: full spectral bulge–disc decomposition
Abstract:
To ascertain whether photometric decompositions of galaxies into bulges and discs are astrophysically meaningful, we have developed a new technique to decompose spectral data cubes into separate bulge and disc components, subject only to the constraint that they reproduce the conventional photometric decomposition. These decompositions allow us to study the kinematic and stellar population properties of the individual components and how they vary with position, in order to assess their plausibility as discrete elements, and to start to reconstruct their distinct formation histories. An initial application of this method to Calar Alto Integral Field Area integral field unit observations of three isolated S0 galaxies confirms that in regions where both bulge and disc contribute significantly to the flux, they can be physically and robustly decomposed into a rotating dispersion-dominated bulge component and a rotating low-dispersion disc component. Analysis of the resulting stellar populations shows that the bulges of these galaxies have a range of ages relative to their discs, indicating that a variety of processes are necessary to describe their evolution. This simple test case indicates the broad potential for extracting from spectral data cubes the full spectral data of a wide variety of individual galaxy components, and for using such decompositions to understand the interplay between these various structures, and hence how such systems formed.Untangling galaxy components: full spectral bulge-disc decomposition
Molecular gas in the halo fuels the growth of a massive cluster galaxy at high redshift
Large-scale filamentary structures around the Virgo Cluster revisited
Abstract:
We revisit the filamentary structures of galaxies around the Virgo cluster, exploiting a larger dataset based on the HyperLeda database than previous studies. In particular, this includes a large number of low-luminosity galaxies, resulting in better sampled individual structures. We confirm seven known structures in the distance range 4 h^-1 Mpc < SGY < 16 h^-1 Mpc, now identified as filaments, where SGY is the axis of the supergalactic coordinate system roughly along the line of sight. The Hubble diagram of the filament galaxies suggests they are infalling toward the main-body of the Virgo cluster. We propose that the collinear distribution of giant elliptical galaxies along the fundamental axis of the Virgo cluster is smoothly connected to two of these filaments (Leo II A and B). Behind the Virgo cluster (16 h^-1 Mpc < SGY < 27 h^-1 Mpc), we also identify a new filament elongated toward the NGC 5353/4 group ("NGC 5353/4 filament") and confirm a sheet that includes galaxies from the W and M clouds of the Virgo cluster ("W-M sheet"). In the Hubble diagram, the NGC 5353/4 filament galaxies show infall toward the NGC 5353/4 group, whereas the W-M sheet galaxies do not show hints of gravitational in uence from the Virgo cluster. The filamentary structures identified can now be used to better understand the generic role of filaments in the build-up of galaxy clusters at z ≈ 0.