Black hole evolution: I. Supernova-regulated black hole growth

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:2 (2015) 1502-1518

Authors:

Y Dubois, M Volonteri, J Silk, Julien Devriendt, Adrianne Slyz, R Teyssier

Abstract:

The growth of a supermassive black hole (BH) is determined by how much gas the host galaxy is able to feed it, which in turn is controlled by the cosmic environment, through galaxy mergers and accretion of cosmic flows that time how galaxies obtain their gas, but also by internal processes in the galaxy, such as star formation and feedback from stars and the BH itself. In this paper, we study the growth of a 10^12 Msun halo at z=2, which is the progenitor of al group of galaxies at z=0, and of its central BH by means of a high-resolution zoomed cosmological simulation, the Seth simulation. We study the evolution of the BH driven by the accretion of cold gas in the galaxy, and explore the efficiency of the feedback from supernovae (SNe). For a relatively inefficient energy input from SNe, the BH grows at the Eddington rate from early times, and reaches self-regulation once it is massive enough. We find that at early cosmic times z>3.5, efficient feedback from SNe forbids the formation of a settled disc as well as the accumulation of dense cold gas in the vicinity of the BH and starves the central compact object. As the galaxy and its halo accumulate mass, they become able to confine the nuclear inflows provided by major mergers and the BH grows at a sustained near-to-Eddington accretion rate. We argue that this mechanism should be ubiquitous amongst low-mass galaxies, corresponding to galaxies with a stellar mass below <10^9 Msun in our simulations.

Evidence of boosted 13CO/12CO ratio in early-type galaxies in dense environments

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 450:4 (2015) 3874-3885

Authors:

Katherine Alatalo, Alison F Crocker, Susanne Aalto, Timothy A Davis, Kristina Nyland, Martin Bureau, Pierre-Alain Duc, Davor Krajnović, Lisa M Young

Gas flow in barred potentials - III. Effects of varying the Quadrupole

(2015)

Authors:

Mattia C Sormani, James Binney, John Magorrian

$\textit{Herschel}$-ATLAS:The connection between star formation and AGN activity in radio-loud and radio-quiet active galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 452:4 (2015) 3776-3794

Authors:

Gulay Gurkan, Martin J Hardcastle, Matthew Jarvis, Daniel JB Smith, Nathan Bourne, Loretta Dunne, Steve Maddox, Rob J Ivison, Jacopo Fritz

Abstract:

We examine the relationship between star formation and AGN activity by constructing matched samples of local radio-loud and radio-quiet AGN in the HerschelATLAS fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies (HERGs, LERGs) using their emission lines and WISE 22-μm luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using Herschel 250-μm luminosity and stellar mass measurements from the SDSS MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with Herschel we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radioquiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.

The impact of accretion disc winds on the optical spectra of cataclysmic variables

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 450:3 (2015) 3331-3344

Authors:

JH Matthews, C Knigge, KS Long, SA Sim, N Higginbottom