The MeerKAT Absorption Line Survey (MALS)
Proceedings of Science (2016)
Abstract:
Deep galaxy surveys have revealed that the global star formation rate (SFR) density in the universe peaks at 1≤ z ≤2 and sharply declines towards z = 0. But a clear picture of the underlying processes, in particular the evolution of cold atomic (∼100 K) and molecular gas phases, that drive such a strong evolution is yet to emerge. MALS is designed to use MeerKAT’s L- and UHF-band receivers to carry out the most sensitive (N(H I)>1019 cm−2) dust-unbiased search of intervening H I 21-cm and OH 18-cm absorption lines at 0 < z < 2. This will provide reliable measurements of the evolution of cold atomic and molecular gas cross-sections of galaxies, and unravel the processes driving the steep evolution in the SFR density. The large sample of H I and OH absorbers obtained from the survey will (i) lead to tightest constraints on the fundamental constants of physics, and (ii) be ideally suited to probe the evolution of magnetic fields in disks of galaxies via Zeeman Splitting or Rotation Measure synthesis. The survey will also provide an unbiased census of H I and OH absorbers, i.e. cold gas associated with powerful AGNs (>1024 W Hz−1) at 0 < z < 2, and will simultaneously deliver a blind H I and OH emission line survey, and radio continuum survey. Here, we describe the MALS survey design, observing plan and the science issues to be addressed under various science themes.The MeerKAT International GHz tiered Extragalactic Exploration (MIGHTEE) survey
Proceedings of Science Proceedings of Science (2016)
Abstract:
The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to $\mu$Jy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ~1 square degree MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume.The MeerKAT international GHz tiered extragalactic exploration (MIGHTEE) survey
Proceedings of Science (2016)
Abstract:
The MIGHTEE large survey project will survey four of the most well-studied extragalactic deep fields, totalling 20 square degrees to µJy sensitivity at Giga-Hertz frequencies, as well as an ultra-deep image of a single ∼1 deg2 MeerKAT pointing. The observations will provide radio continuum, spectral line and polarisation information. As such, MIGHTEE, along with the excellent multi-wavelength data already available in these deep fields, will allow a range of science to be achieved. Specifically, MIGHTEE is designed to significantly enhance our understanding of, (i) the evolution of AGN and star-formation activity over cosmic time, as a function of stellar mass and environment, free of dust obscuration; (ii) the evolution of neutral hydrogen in the Universe and how this neutral gas eventually turns into stars after moving through the molecular phase, and how efficiently this can fuel AGN activity; (iii) the properties of cosmic magnetic fields and how they evolve in clusters, filaments and galaxies. MIGHTEE will reach similar depth to the planned SKA all-sky survey, and thus will provide a pilot to the cosmology experiments that will be carried out by the SKA over a much larger survey volume.The mid-infrared emission of a complete sample of Seyfert galaxies
Proceedings of the 12th Scientific Meeting of the Spanish Astronomical Society - Highlights of Spanish Astrophysics IX, SEA 2016 (2016) 159-162
Abstract:
We present subarcsecond resolution mid-infrared (MIR) images obtained with 8-10 m-class ground-based telescopes of a complete volume-limited (DL <40 Mpc) sample of 24 Seyfert galaxies selected from the Swift/BAT nine month catalog. We use those MIR images to study the nuclear and circumnuclear emission of the galaxies. Using different methods to classify the MIR morphologies on scales of ∼400 pc, we find that the majority of the galaxies (75-83%) are extended or possibly extended and 17-25% are point-like. This extended emission is compact and it has low surface brightness compared with the nuclear emission, and it represents, on average, ∼30 % of the total MIR emission of the galaxies in the sample. We find that the galaxies whose circumnuclear MIR emission is dominated by star formation show more extended emission (650±700pc) than AGN-dominated systems (300±100pc). In general, the galaxies with point-like MIR morphologies are face-on or moderately inclined (b/a ∼0.4-1.0), and we do not find significant differences between the morphologies of Sy1 and Sy2. We used the nuclear and circumnuclear fluxes to investigate their correlation with different AGN and SF activity indicators. We find that the nuclear MIR emission (the inner ∼70 pc) is strongly correlated with the X-ray emission (the harder the X-rays the better the correlation) and with the [OIV] λ25.89 μm emission line, indicating that it is AGN-dominated. We find the same results, although with more scatter, for the circumnuclear emission, which indicates that the AGN dominates the MIR emission in the inner ∼400 pc of the galaxies, with some contribution from star formation.ThunderKAT: The MeerKAT Large survey project for image-plane radio transients
Proceedings of Science (2016)