Structural decomposition of merger-free galaxies hosting luminous AGNs
Monthly Notices of the Royal Astronomical Society Oxford University Press 537:4 (2025) 3511-3524
Abstract:
Active galactic nucleus (AGN) growth in disc-dominated, merger-free galaxies is poorly understood, largely due to the difficulty in disentangling the AGN emission from that of the host galaxy. By carefully separating this emission, we examine the differences between AGNs in galaxies hosting a (possibly) merger-grown, classical bulge, and AGNs in secularly grown, truly bulgeless disc galaxies. We use galfit to obtain robust, accurate morphologies of 100 disc-dominated galaxies imaged with the Hubble Space Telescope. Adopting an inclusive definition of classical bulges, we detect a classical bulge component in per cent of the galaxies. These bulges were not visible in Sloan Digital Sky Survey photometry, however these galaxies are still unambiguously disc-dominated, with an average bulge-to-total luminosity ratio of . We find some correlation between bulge mass and black hole mass for disc-dominated galaxies, though this correlation is significantly weaker in comparison to the relation for bulge-dominated or elliptical galaxies. Furthermore, a significant fraction ( per cent) of our black holes are overly massive when compared to the relationship for elliptical galaxies. We find a weak correlation between total stellar mass and black hole mass for the disc-dominated galaxies, hinting that the stochasticity of black hole–galaxy co-evolution may be higher in disc-dominated than bulge-dominated systems.The JWST/NIRSpec view of the nuclear region in the prototypical merging galaxy NGC 6240
Astronomy & Astrophysics EDP Sciences (2025)
GA-NIFS: Multiphase analysis of a star-forming galaxy at z∼5.5
Astronomy & Astrophysics EDP Sciences (2025)
Monster Radio Jet (>66 kpc) Observed in Quasar at z ∼ 5
The Astrophysical Journal Letters American Astronomical Society 980:1 (2025) L8
Abstract:
We present the discovery of a large extended radio jet associated with the extremely radio-loud quasar J1601+3102 at z ∼ 5 from subarcsecond resolution imaging at 144 MHz with the International LOFAR Telescope. These large radio lobes have been argued to remain elusive at z > 4 due to energy losses in the synchrotron emitting plasma as a result of scattering of the strong cosmic microwave background at these high redshifts. Nonetheless, the 0 .′′ 3 resolution radio image of J1601+3102 reveals a northern and a southern radio lobe located at 9 and 57 kpc from the optical quasar, respectively. The measured jet size of 66 kpc makes J1601+3102 the largest extended radio jet at z > 4 to date. However, it is expected to have an even larger physical size in reality due to projection effects brought about by the viewing angle. Furthermore, we observe the rest-frame UV spectrum of J1601+3102 with Gemini/GNIRS to examine its black hole properties, which results in a mass of 4.5 × 108 M⊙ with an Eddington luminosity ratio of 0.45. The black hole mass is relatively low compared to the known high-z quasar population, which suggests that a high black hole mass is not strictly necessary to generate a powerful jet. This discovery of the first ∼100 kpc radio jet at z > 4 shows that these objects exist despite energy losses from inverse Compton scattering and can put invaluable constraints on the formation of the first radio-loud sources in the early Universe.On the relationship between the cosmic web and the alignment of galaxies and AGN jets
ArXiv 2502.0373 (2025)