A precise symbolic emulator of the linear matter power spectrum

Astronomy and Astrophysics EDP Sciences 686 (2024) a209

Authors:

Deaglan J Bartlett, Lukas Kammerer, Gabriel Kronberger, Harry Desmond, Pedro G Ferreira, Benjamin D Wandelt, Bogdan Burlacu, David Alonso, Matteo Zennaro

Abstract:

Context. Computing the matter power spectrum, P(k), as a function of cosmological parameters can be prohibitively slow in cosmological analyses, hence emulating this calculation is desirable. Previous analytic approximations are insufficiently accurate for modern applications, so black-box, uninterpretable emulators are often used.

Aims. We aim to construct an efficient, differentiable, interpretable, symbolic emulator for the redshift zero linear matter power spectrum which achieves sub-percent level accuracy. We also wish to obtain a simple analytic expression to convert As to σ8 given the other cosmological parameters.

Methods. We utilise an efficient genetic programming based symbolic regression framework to explore the space of potential mathematical expressions which can approximate the power spectrum and σ8. We learn the ratio between an existing low-accuracy fitting function for P(k) and that obtained by solving the Boltzmann equations and thus still incorporate the physics which motivated this earlier approximation.

Results. We obtain an analytic approximation to the linear power spectrum with a root mean squared fractional error of 0.2% between k = 9 × 10−3 − 9 h Mpc−1 and across a wide range of cosmological parameters, and we provide physical interpretations for various terms in the expression. Our analytic approximation is 950 times faster to evaluate than CAMB and 36 times faster than the neural network based matter power spectrum emulator BACCO. We also provide a simple analytic approximation for σ8 with a similar accuracy, with a root mean squared fractional error of just 0.1% when evaluated across the same range of cosmologies. This function is easily invertible to obtain As as a function of σ8 and the other cosmological parameters, if preferred.

Conclusions. It is possible to obtain symbolic approximations to a seemingly complex function at a precision required for current and future cosmological analyses without resorting to deep-learning techniques, thus avoiding their black-box nature and large number of parameters. Our emulator will be usable long after the codes on which numerical approximations are built become outdated.

Gas assisted binary black hole formation in AGN discs

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:4 (2024) 4656-4680

Authors:

Henry Whitehead, Connar Rowan, Tjarda Boekholt, Bence Kocsis

Abstract:

<jats:title>ABSTRACT</jats:title> <jats:p>We investigate close encounters by stellar mass black holes (BHs) in the gaseous discs of active galactic nuclei (AGNs) as a potential formation channel of binary black holes (BBHs). We perform a series of 2D isothermal viscous hydrodynamical simulations within a shearing box prescription using the Eulerian grid code Athena++. We co-evolve the embedded BHs with the gas keeping track of the energetic dissipation and torquing of the BBH by gas gravitation and inertial forces. To probe the dependence of capture on the initial conditions, we discuss a suite of 345 simulations spanning BBH impact parameter (b) and local AGN disc density (ρ0). We identify a clear region in b − ρ0 space where gas assisted BBH capture is efficient. We find that the presence of gas leads to strong energetic dissipation during close encounters between unbound BHs, forming stably bound eccentric BBHs. We find that the gas dissipation during close encounters increases for systems with increased disc density and deeper periapsis passages rp, fitting a power law such that $\Delta E \propto \rho _0^{\alpha }r_{\mathrm{p}}^{\beta }$, where {α, β} = {1.01 ± 0.04, −0.43 ± 0.03}. Alternatively, the gas dissipation is approximately ΔE = 4.3MdvHvp, where Md is the mass of a single BH minidisc just prior to the encounter when the binary separation is 2rH (two binary Hill radii), vH and vp are the relative BH velocities at 2rH and at the first closest approach, respectively. We derive a prescription for capture which can be used in semi-analytical models of AGN. We do not find the dissipative dynamics observed in these systems to be in agreement with the simple gas dynamical friction models often used in the literature.</jats:p>

The fountain of the luminous infrared galaxy Zw049.057 as traced by its OH megamaser

(2024)

Authors:

Boy Lankhaar, Susanne Aalto, Clare Wethers, Javier Moldon, Rob Beswick, Mark Gorski, Sabine König, Chentao Yang, Jeff Mangum, John Gallagher, Francoise Combes, Dimitra Rigopoulou, Eduardo González-Alfonso, Sébastien Muller, Ismael Garcia-Bernete, Christian Henkel, Yuri Nishimura, Claudio Ricci

The Galaxies Missed by Hubble and ALMA: The Contribution of Extremely Red Galaxies to the Cosmic Census at 3 < z < 8

The Astrophysical Journal American Astronomical Society 968:1 (2024) 34

Authors:

Christina C Williams, Stacey Alberts, Zhiyuan Ji, Kevin N Hainline, Jianwei Lyu, George Rieke, Ryan Endsley, Katherine A Suess, Fengwu Sun, Benjamin D Johnson, Michael Florian, Irene Shivaei, Wiphu Rujopakarn, William M Baker, Rachana Bhatawdekar, Kristan Boyett, Andrew J Bunker, Alex J Cameron, Stefano Carniani, Stephane Charlot, Emma Curtis-Lake, Christa DeCoursey, Anna de Graaff, Eiichi Egami, Aayush Saxena

Abstract:

Using deep JWST imaging from JADES, JEMS, and SMILES, we characterize optically faint and extremely red galaxies at z > 3 that were previously missing from galaxy census estimates. The data indicate the existence of abundant, dusty, and poststarburst-like galaxies down to 108 M ⊙, below the sensitivity limit of Spitzer and the Atacama Large Millimeter/submillimeter Array (ALMA). Modeling the NIRCam and Hubble Space Telescope (HST) photometry of these red sources can result in extremely high values for both stellar mass and star formation rate (SFR); however, including seven MIRI filters out to 21 μm results in decreased masses (median 0.6 dex for log10(M∗/M⊙) > 10) and SFRs (median 10× for SFR > 100 M ⊙ yr−1). At z > 6, our sample includes a high fraction of “little red dots” (LRDs; NIRCam-selected dust-reddened active galactic nucleus (AGN) candidates). We significantly measure older stellar populations in the LRDs out to rest-frame 3 μm (the stellar bump) and rule out a dominant contribution from hot dust emission, a signature of AGN contamination to stellar population measurements. This allows us to measure their contribution to the cosmic census at z > 3, below the typical detection limits of ALMA (L IR < 1012 L ⊙). We find that these sources, which are overwhelmingly missed by HST and ALMA, could effectively double the obscured fraction of the star formation rate density at 4 < z < 6 compared to some estimates, showing that prior to JWST, the obscured contribution from fainter sources could be underestimated. Finally, we identify five sources with evidence for Balmer breaks and high stellar masses at 5.5 < z < 7.7. While spectroscopy is required to determine their nature, we discuss possible measurement systematics to explore with future data.

MeerKAT discovery of a double radio relic and odd radio circle: connecting cluster and galaxy merger shocks

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 531:3 (2024) 3357-3372

Authors:

Bärbel S Koribalski, Angie Veronica, Klaus Dolag, Thomas H Reiprich, Marcus Brüggen, Ian Heywood, Heinz Andernach, Ralf-Jürgen Dettmar, Matthias Hoeft, Xiaoyuan Zhang, Esra Bulbul, Christian Garrel, Gyula IG Józsa, Jayanne English