The suppression of star formation by powerful active galactic nuclei

(2013)

Authors:

MJ Page, M Symeonidis, JD Vieira, B Altieri, A Amblard, V Arumugam, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, V Buat, N Castro-Rodr'iguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, EN Dubois, JS Dunlop, E Dwek, S Dye, S Eales, D Elbaz, D Farrah, M Fox, A Franceschini, W Gear, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, E Ibar, K Isaak, RJ Ivison, G Lagache, L Levenson, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, P Panuzzo, A Papageorgiou, CP Pearson, I Perez-Fournon, M Pohlen, JI Rawlings, D Rigopoulou, L Riguccini, D Rizzo, G Rodighiero, IG Roseboom, M Rowan-Robinson, M Sanchez Portal, B Schulz, Douglas Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, M Viero, L Vigroux, L Wang, R Ward, G Wright, CK Xu, M Zemcov

Swirling around filaments: are large-scale structure vortices spinning up dark halos?

ArXiv 1310.3801 (2013)

Authors:

Clotilde Laigle, Christophe Pichon, Sandrine Codis, Yohan Dubois, Damien le Borgne, Dmitri Pogosyan, Julien Devriendt, Sebastien Peirani, Simon Prunet, Stephane Rouberol, Adrianne Slyz, Thierry Sousbie

Abstract:

The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60 degrees relative to random orientations. The cross sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, originating from neighbouring walls. The spins of halos embedded within these filaments are consistently aligned with this vorticity for any halo mass, with a stronger alignment for the most massive structures up to an excess of probability of 165 per cent. On large scales, adiabatic/cooling hydrodynamical simulations display the same vorticity in the gas as in the dark matter. The global geometry of the flow within the cosmic web is therefore qualitatively consistent with a spin acquisition for smaller halos induced by this large-scale coherence, as argued in Codis et al. (2012). In effect, secondary anisotropic infall (originating from the vortex-rich filament within which these lower-mass halos form) dominates the angular momentum budget of these halos. The transition mass from alignment to orthogonality is related to the size of a given multi-flow region with a given polarity. This transition may be reconciled with the standard tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic environment of walls and filaments.

Swirling around filaments: are large-scale structure vortices spinning up dark halos?

(2013)

Authors:

Clotilde Laigle, Christophe Pichon, Sandrine Codis, Yohan Dubois, Damien le Borgne, Dmitri Pogosyan, Julien Devriendt, Sebastien Peirani, Simon Prunet, Stephane Rouberol, Adrianne Slyz, Thierry Sousbie

HerMES: dust attenuation and star formation activity in UV-selected samples from z~4 to z~1.5

(2013)

Authors:

S Heinis, V Buat, M Bethermin, J Bock, D Burgarella, A Conley, A Cooray, D Farrah, O Ilbert, G Magdis, G Marsden, SJ Oliver, D Rigopoulou, Y Roehlly, B Schulz, M Symeonidis, M Viero, CK Xu, M Zemcov

Far-infrared fine-structure line diagnostics of ultraluminous infrared galaxies

Astrophysical Journal 776:1 (2013)

Authors:

D Farrah, V Lebouteiller, HWW Spoon, J Bernard-Salas, C Pearson, D Rigopoulou, HA Smith, E González-Alfonso, DL Clements, A Efstathiou, D Cormier, J Afonso, SM Petty, K Harris, P Hurley, C Borys, A Verma, A Cooray, V Salvatelli

Abstract:

We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s-1 and luminosities of 107-109 LO. There are deficits in the [O I]63/L IR, [N II]/L IR, [O I]145/L IR, and [C II]/L IR ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 101 < n < 102.5 and 102.2 < G 0 < 103.6, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity. © 2013. The American Astronomical Society. All rights reserved.