The closest black holes

Monthly Notices of the Royal Astronomical Society 430:3 (2013) 1538-1547

Authors:

RP Fender, TJ Maccarone, I Heywood

Abstract:

Starting from the assumption that there is a large population (≥108) of stellar-mass isolated black holes (IBH) distributed throughout our Galaxy, we consider the detectable signatures of accretion from the interstellar medium (ISM) that may be associated with such a population. We simulate the nearby (radius 250 pc) part of this population, corresponding to the closest ~35 000 black holes, using current best estimates of the mass distribution of stellar-mass black holes combined with two models for the velocity distribution of stellar-mass IBH which bracket likely possibilities. We distribute this population of objects appropriately within the different phases of the ISM and calculate the Bondi-Hoyle accretion rate, modified by a further dimensionless efficiency parameter λ. Assuming a simple prescription for radiatively inefficient accretion at low Eddington ratios, we calculate the X-ray luminosity of these objects, and similarly estimate the radio luminosity from relations found empirically for black holes accreting at low rates. The latter assumption depends crucially on whether or not the IBH accrete from the ISM in a manner which is axisymmetric enough to produce jets. Comparing the predicted X-ray fluxes with limits from hard X-ray surveys, we conclude that either the Bondi-Hoyle efficiency parameter λ is rather small (=0.01), the velocities of the IBH are rather high, or some combination of both. The predicted radio flux densities correspond to a population of objects which, while below current survey limits, should be detectable with the Square Kilometre Array (SKA). Converting the simulated space velocities into proper motions, we further demonstrate that such IBH could be identified as faint high proper motion radio sources in SKA surveys. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

The radio source count at 93.2 GHz from observations of 9C sources using AMI and CARMA

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 430:3 (2013) 1961-1969

Authors:

Matthew L Davies, Irina I Stefan, Rosie C Bolton, John M Carpenter, Thomas MO Franzen, Keith JB Grainge, David A Green, Michael P Hobson, Natasha Hurley-Walker, Anthony N Lasenby, Malak Olamaie, Yvette C Perrott, Guy G Pooley, Julia M Riley, Carmen Rodríguez-Gonzálvez, Richard DE Saunders, Anna MM Scaife, Michel P Schammel, Paul F Scott, Timothy W Shimwell, David J Titterington, Elizabeth M Waldram, Imogen H Whittam

The EGNoG Survey: Molecular Gas in Intermediate-Redshift Star-Forming Galaxies

(2013)

Authors:

Amber Bauermeister, Leo Blitz, Alberto D Bolatto, Martin Bureau, Adam Leroy, Eve Ostriker, Peter J Teuben, Tony Wong, Melvyn CH Wright

Ripple effects & oscillations in the broad FeKa line as a probe of massive black hole mergers

(2013)

Authors:

B McKernan, KES Ford, B Kocsis, Z Haiman

Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies

ArXiv 1303.6631 (2013)

Authors:

Jacopo Chevallard, Stephane Charlot, Benjamin Wandelt, Vivienne Wild

Abstract:

[Abridged] We present a new approach to investigate the content and spatial distribution of dust in structurally unresolved star-forming galaxies from the observed dependence of integrated spectral properties on galaxy inclination. We develop an innovative combination of generic models of radiative transfer (RT) in dusty media with a prescription for the spectral evolution of galaxies, via the association of different geometric components of galaxies with stars in different age ranges. We show that a wide range of RT models all predict a quasi-universal relation between slope of the attenuation curve at any wavelength and V-band attenuation optical depth in the diffuse interstellar medium (ISM), at all galaxy inclinations. This relation predicts steeper (shallower) dust attenuation curves than both the Calzetti and MW curves at small (large) attenuation optical depths, which implies that geometry and orientation effects have a stronger influence on the shape of the attenuation curve than changes in the optical properties of dust grains. We use our combined RT and spectral evolution model to interpret the observed dependence of the H\alpha/H\beta\ ratio and ugrizYJH attenuation curve on inclination in a sample of ~23 000 nearby star-forming galaxies. From a Bayesian MCMC fit, we measure the central face-on B-band optical depth of this sample to be tau_B\perp~1.8\pm0.2. We also quantify the enhanced optical depth towards newly formed stars in their birth clouds, finding this to be significantly larger in galaxies with bulges than in disc-dominated galaxies, while tau_B\perp is roughly similar in both cases. Finally, we show that neglecting the effect of geometry and orientation on attenuation can severely bias the interpretation of galaxy spectral energy distributions, as the impact on broadband colours can reach up to 0.3-0.4 mag at optical wavelengths and 0.1 mag at near-infrared ones.