The Gemini NICI Planet-Finding Campaign: The Frequency of Planets around Young Moving Group Stars

ArXiv 1309.1462 (2013)

Authors:

Beth A Biller, Michael C Liu, Zahed Wahhaj, Eric L Nielsen, Thomas L Hayward, Jared R Males, Andrew Skemer, Laird M Close, Mark Chun, Christ Ftaclas, Fraser Clarke, Niranjan Thatte, Evgenya L Shkolnik, I Neill Reid, Markus Hartung, Alan Boss, Douglas Lin, Silvia HP Alencar, Elisabete de Gouveia Dal Pino, Jane Gregorio-Hetem, Douglas Toomey

Abstract:

We report results of a direct imaging survey for giant planets around 80 members of the Beta Pic, TW Hya, Tucana-Horologium, AB Dor, and Hercules-Lyra moving groups, observed as part of the Gemini NICI Planet-Finding Campaign. For this sample, we obtained median contrasts of \Delta H=13.9 mag at 1" in combined CH4 narrowband ADI+SDI mode and median contrasts of \Delta H=15.1 mag at 2" in H-band ADI mode. We found numerous (>70) candidate companions in our survey images. Some of these candidates were rejected as common-proper motion companions using archival data; we reobserved with NICI all other candidates that lay within 400 AU of the star and were not in dense stellar fields. The vast majority of candidate companions were confirmed as background objects from archival observations and/or dedicated NICI campaign followup. Four co-moving companions of brown dwarf or stellar mass were discovered in this moving group sample: PZ Tel B (36+-6 MJup, 16.4+-1.0 AU, Biller et al. 2010), CD -35 2722B (31+-8 MJup, 67+-4 AU, Wahhaj et al. 2011), HD 12894B (0.46+-0.08 MSun, 15.7+-1.0 AU), and BD+07 1919C (0.20+-0.03 MSun, 12.5+-1.4 AU). From a Bayesian analysis of the achieved H band ADI and ASDI contrasts, using power-law models of planet distributions and hot-start evolutionary models, we restrict the frequency of 1--20 MJup companions at semi-major axes from 10--150 AU to <18% at a 95.4% confidence level using DUSTY models and to <6% at a 95.4% using COND models.

Effect of environment on galaxies mass-size distribution: unveiling the transition from outside-in to inside-out evolution

(2013)

Encoding the infrared excess (IRX) in the NUVrK color diagram for star-forming galaxies

ArXiv 1309.0008 (2013)

Authors:

Stephane Arnouts, Emeric Le Floc'h, Jacopo Chevallard, Benjamin D Johnson, Olivier Ilbert, Marie Treyer, Herve Aussel, Peter Capak, Dave B Sanders, Nick Scoville, Henry J McCracken, Bruno Milliard, Lucia Pozzetti, Mara Salvato

Abstract:

We present an empirical method of assessing the star formation rate (SFR) of star-forming galaxies based on their locations in the rest-frame color-color diagram (NUV-r) vs (r-K). By using the Spitzer 24 micron sample in the COSMOS field (~16400 galaxies with 0.2 < z < 1.3) and a local GALEX-SDSS-SWIRE sample (~700 galaxies with z < 0.2), we show that the mean infrared excess = < L_IR / L_UV > can be described by a single vector, NRK, that combines the two colors. The calibration between and NRK allows us to recover the IR luminosity, L_IR, with an accuracy of ~0.21 dex for the COSMOS sample and ~0.27 dex for the local one. The SFRs derived with this method agree with the ones based on the observed (UV+IR) luminosities and on the spectral energy distribution fitting for the vast majority (~85 %) of the star-forming population. Thanks to a library of model galaxy SEDs with realistic prescriptions for the star formation history, we show that we need to include a two-component dust model (i.e., birth clouds and diffuse ISM) and a full distribution of galaxy inclinations in order to reproduce the behavior of the stripes in the NUVrK diagram. In conclusion, the NRK method, based only on rest-frame UV and optical colors available in most of the extragalactic fields, offers a simple alternative of assessing the SFR of star-forming galaxies in the absence of far-IR or spectral diagnostic observations.

Fast and Slow Rotators in the Densest Environments: a SWIFT IFS study of the Coma Cluster

ArXiv 1308.6581 (2013)

Authors:

RCW Houghton, Roger L Davies, F D'Eugenio, N Scott, N Thatte, F Clarke, M Tecza, GS Salter, LMR Fogarty, T Goodsall

Abstract:

We present integral-field spectroscopy of 27 galaxies in the Coma cluster observed with the Oxford SWIFT spectrograph, exploring the kinematic morphology-density relationship in a cluster environment richer and denser than any in the ATLAS3D survey. Our new data enables comparison of the kinematic morphology relation in three very different clusters (Virgo, Coma and Abell 1689) as well as to the field/group environment. The Coma sample was selected to match the parent luminosity and ellipticity distributions of the early-type population within a radius 15' (0.43 Mpc) of the cluster centre, and is limited to r' = 16 mag (equivalent to M_K = -21.5 mag), sampling one third of that population. From analysis of the lambda-ellipticity diagram, we find 15+-6% of early-type galaxies are slow rotators; this is identical to the fraction found in the field and the average fraction in the Virgo cluster, based on the ATLAS3D data. It is also identical to the average fraction found recently in Abell 1689 by D'Eugenio et al.. Thus it appears that the average slow rotator fraction of early type galaxies remains remarkably constant across many different environments, spanning five orders of magnitude in galaxy number density. However, within each cluster the slow rotators are generally found in regions of higher projected density, possibly as a result of mass segregation by dynamical friction. These results provide firm constraints on the mechanisms that produce early-type galaxies: they must maintain a fixed ratio between the number of fast rotators and slow rotators while also allowing the total early-type fraction to increase in clusters relative to the field. A complete survey of Coma, sampling hundreds rather than tens of galaxies, could probe a more representative volume of Coma and provide significantly stronger constraints, particularly on how the slow rotator fraction varies at larger radii.

The James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey IX: $^{12}$CO $J=3\to2$ Observations of NGC 2976 and NGC 3351

(2013)

Authors:

Boon-Kok Tan, J Leech, D Rigopoulou, BE Warren, CD Wilson, D Attewell, M Azimlu, GJ Bendo, HM Butner, E Brinks, P Chanial, DL Clements, V Heesen, F Israel, JH Knapen, HE Matthews, AMJ Mortier, Mühle, JR Sánchez-Gallego, RPJ Tilanus, A Usero, P van der Werf, M Zhu