Resonant Post-Newtonian Eccentricity Excitation in Hierarchical Three-body Systems

(2012)

Authors:

Smadar Naoz, Bence Kocsis, Abraham Loeb, Nicolas Yunes

The Spitzer Extragalactic Representative Volume Survey (SERVS): survey definition and goals

ArXiv 1206.406 (2012)

Authors:

J-C Mauduit, M Lacy, D Farrah, JA Surace, M Jarvis, S Oliver, C Maraston, M Vaccari, L Marchetti, G Zeimann, EA Gonzalez-Solares, J Pforr, AO Petric, B Henriques, PA Thomas, J Afonso, A Rettura, G Wilson, JT Falder, JE Geach, M Huynh, RP Norris, N Seymour, GT Richards, SA Stanford, DM Alexander, RH Becker, PN Best, L Bizzocchi, D Bonfield, N Castro, A Cava, S Chapman, N Christopher, DL Clements, G Covone, N Dubois, JS Dunlop, E Dyke, A Edge, HC Ferguson, S Foucaud, A Franceschini, RR Gal, JK Grant, M Grossi, E Hatziminaoglou, S Hickey, JA Hodge, J-S Huang, RJ Ivison, M Kim, O LeFevre, M Lehnert, CJ Lonsdale, LM Lubin, RJ McLure, H Messias, A Martinez-Sansigre, AMJ Mortier, DM Nielsen, M Ouchi, G Parish, I Perez-Fournon, M Pierre, S Rawlings, A Readhead, SE Ridgway, D Rigopoulou, AK Romer, IG Rosebloom, HJA Rottgering, M Rowan-Robinson, A Sajina, CJ Simpson, I Smail, GK Squires, JA Stevens, R Taylor, M Trichas, T Urrutia, E van Kampen, A Verma, CK Xu

Abstract:

We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 square degrees medium-deep survey at 3.6 and 4.5 microns with the post-cryogenic Spitzer Space Telescope to ~2 microJy (AB=23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South and XMM-LSS). SERVS is designed to enable the study of galaxy evolution as a function of environment from z~5 to the present day, and is the first extragalactic survey both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z>1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near- through far-infrared, submillimeter and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this paper, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicing to catalogs, as well as coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey.

Repeated bursts from relativistic scattering of compact objects in galactic nuclei

Physical Review D American Physical Society (APS) 85:12 (2012) 123005

Authors:

Bence Kocsis, Janna Levin

HerMES: Deep number counts at 250 μm, 350 μm and 500 μm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

Astronomy and Astrophysics 542 (2012)

Authors:

M Béthermin, E Le Floc'H, O Ilbert, A Conley, G Lagache, A Amblard, V Arumugam, H Aussel, S Berta, J Bock, A Boselli, V Buat, CM Casey, N Castro-Rodríguez, A Cava, DL Clements, A Cooray, CD Dowell, S Eales, D Farrah, A Franceschini, J Glenn, M Griffin, E Hatziminaoglou, S Heinis, E Ibar, RJ Ivison, JS Kartaltepe, L Levenson, G Magdis, L Marchetti, G Marsden, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, D Rigopoulou, IG Roseboom, M Rowan-Robinson, M Salvato, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, JD Vieira, M Viero, L Wang, CK Xu, M Zemcov

Abstract:

Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 μm, 350 μm, and 500 μm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (∼20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 μm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 μm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ∼2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1 -2.3+2.6 nW m -2 sr -1, 6.5 -1.6+1.7 nW m -2 sr -1, and 2.8 -0.8+0.9 nW m -2 sr -1 at 250 μm, 350 μm, and 500 μm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 μm and 1000 μm: 26 -3+7 nW m -2 sr -1. © 2012 ESO.

Discovery of three distant, cold brown dwarfs in the WFC3 infrared spectroscopic parallels survey

Astrophysical Journal Letters 752:1 (2012)

Authors:

D Masters, P McCarthy, AJ Burgasser, NP Hathi, M Malkan, NR Ross, B Siana, C Scarlata, A Henry, J Colbert, H Atek, M Rafelski, H Teplitz, A Bunker, A Dressler

Abstract:

We present the discovery of three late-type (≥T4.5) brown dwarfs, including a probable Y dwarf, in the WFC3 Infrared Spectroscopic Parallels (WISP) survey. We use the G141 grism spectra to determine the spectral types of the dwarfs and derive distance estimates based on a comparison with nearby T dwarfs with known parallaxes. These are the most distant spectroscopically confirmed T/Y dwarfs, with the farthest at an estimated distance of 400pc. We compare the number of cold dwarfs found in the WISP survey with simulations of the brown dwarf mass function. The number found is generally consistent with an initial stellar mass function dN/dMM -α with α = 0.0-0.5, although the identification of a Y dwarf is somewhat surprising and may be indicative of either a flatter absolute magnitude/spectral-type relation than previously reported or an upturn in the number of very-late-type brown dwarfs in the observed volume. © 2012. The American Astronomical Society. All rights reserved..