Supernova remnants on the outskirts of the Large Magellanic Cloud
Astronomy & Astrophysics EDP Sciences 693 (2025) l15
Early-type galaxies: Elliptical and S0 galaxies, or fast and slow rotators
Chapter in Reference Module in Materials Science and Materials Engineering, Elsevier (2025)
Abstract:
Early-type galaxies (ETGs) show a bimodal distribution in key structural properties like stellar specific angular momentum, kinematic morphology, shape, and nuclear surface brightness profiles. Slow rotator ETGs, mostly found in the densest regions of galaxy clusters, become common when the stellar mass exceeds a critical value of around M ∗ crit ≈2×1011 M ⊙, or more precisely when lg(R e/kpc)≳12.4−lg(M ∗/M ⊙). These galaxies have low specific angular momentum, spheroidal shapes, and stellar populations that are old, metal-rich, and α-enhanced. In contrast, fast rotator ETGs form a continuous sequence of properties with spiral galaxies. In these galaxies, the age, metallicity, and α-enhancement of the stellar population correlate best with the effective stellar velocity dispersion σ e ∝ M ∗ / R e (i.e., properties are similar for R e ∝ M ∗), or with other proxies approximating their bulge mass fraction. This sequence spans from star-forming spiral disks to quenched, passive, spheroid-dominated fast rotator ETGs. Notably, at a fixed σ e, younger galaxies show lower metallicity. The structural differences and environmental distributions of ETGs suggest two distinct formation pathways: slow rotators undergo early intense star formation followed by rapid quenching via their dark halos and supermassive black holes, and later evolve through dry mergers during hierarchical cluster assembly; fast rotators, on the other hand, develop more gradually through gas accretion and minor mergers, becoming quenched by internal feedback above a characteristic lg(σ e crit/km s−1) ≳ 2.3 (in the local Universe) or due to environmental effects.HETDEX-LOFAR Spectroscopic Redshift Catalog ∗ ∗ Based on observations obtained with the Hobby–Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen
The Astrophysical Journal American Astronomical Society 978:1 (2024) 101
Abstract:
We combine the power of blind integral field spectroscopy from the Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) with sources detected by the Low Frequency Array (LOFAR) to construct the HETDEX-LOFAR Spectroscopic Redshift Catalog. Starting from the first data release of the LOFAR Two-metre Sky Survey, including a value-added catalog with photometric redshifts, we extracted 28,705 HETDEX spectra. Using an automatic classifying algorithm, we assigned each object a star, galaxy, or quasar label along with a velocity/redshift, with supplemental classifications coming from the continuum and emission-line catalogs of the internal, fourth data release from HETDEX (HDR4). We measured 9087 new redshifts; in combination with the value-added catalog, our final spectroscopic redshift sample is 9710 sources. This new catalog contains the highest substantial fraction of LOFAR galaxies with spectroscopic redshift information; it improves archival spectroscopic redshifts and facilitates research to determine the [O ii] emission properties of radio galaxies from 0.0 < z < 0.5, and the Lyα emission characteristics of both radio galaxies and quasars from 1.9 < z < 3.5. Additionally, by combining the unique properties of LOFAR and HETDEX, we are able to measure star formation rates (SFRs) and stellar masses. Using the Visible Integral-field Replicable Unit Spectrograph, we measure the emission lines of [O iii], [Ne iii], and [O ii] and evaluate line-ratio diagnostics to determine whether the emission from these galaxies is dominated by active galactic nuclei or star formation and fit a new SFR–L 150MHz relationship.No Evidence for a Significant Evolution of M • – M. Relation in Massive Galaxies up to z ∼ 4
The Astrophysical Journal American Astronomical Society 978:1 (2024) 98
Abstract:
Over the past two decades, tight correlations between black hole masses (M•) and their host galaxy properties have been firmly established for massive galaxies (with stellar mass log(M*/M⊙)≳10 ) at low-z (z < 1), indicating coevolution of supermassive black holes and galaxies. However, the situation at high-z, especially beyond cosmic noon (z ≳ 2.5), is controversial. With a combination of JWST Near Infrared Camera (NIRCam)/wide field slitless spectroscopy (WFSS) from FRESCO, CONGRESS and deep multiband NIRCam/image data from JADES in the GOODS fields, we study the black-hole-to-galaxy mass relation at z ∼ 1–4. After identifying 18 broad-line active galactic nuclei (AGNs) at 1 < z < 4 (with 8 at z > 2.5) from the WFSS data, we measure their black hole masses based on broad near-infrared lines (Paα, Paβ, and He i λ10833 Å), and constrain their stellar masses from AGN-galaxy image decomposition or spectral energy distribution decomposition. Taking account of the observational biases, the intrinsic scatter of the M•−M* relation, and the errors in mass measurements, we find no significant difference in the M•/M* ratio for 2.5 < z < 4 compared to that at lower redshifts (1 < z < 2.5), suggesting no evolution of the M•−M* relation at log(M*/M⊙)≳10 up to z ∼ 4.The Relation between AGN and Host-galaxy Properties in the JWST Era. I. Seyferts at Cosmic Noon are Obscured and Disturbed
The Astrophysical Journal American Astronomical Society 978:1 (2024) 74