GAMA/H-ATLAS: THE DUST OPACITY–STELLAR MASS SURFACE DENSITY RELATION FOR SPIRAL GALAXIES

The Astrophysical Journal American Astronomical Society 766:1 (2013) 59

Authors:

MW Grootes, RJ Tuffs, CC Popescu, B Pastrav, E Andrae, M Gunawardhana, LS Kelvin, J Liske, M Seibert, EN Taylor, Alister W Graham, M Baes, IK Baldry, N Bourne, S Brough, A Cooray, A Dariush, G De Zotti, SP Driver, L Dunne, H Gomez, AM Hopkins, R Hopwood, M Jarvis, J Loveday, S Maddox, BF Madore, MJ Michałowski, P Norberg, HR Parkinson, M Prescott, ASG Robotham, DJB Smith, D Thomas, E Valiante

Multi-wavelength study of a complete IRAC 3.6 μm selected galaxy sample: A fair census of red and blue populations at redshifts 0.4-1.2

Astrophysical Journal 766:1 (2013)

Authors:

JS Huang, SM Faber, CNA Willmer, D Rigopoulou, D Koo, J Newman, C Shu, MLN Ashby, P Barmby, A Coil, Z Luo, G Magdis, T Wang, B Weiner, SP Willner, XZ Zheng, GG Fazio

Abstract:

We present a multi-wavelength study of a 3.6 μm selected galaxy sample in the Extended Groth Strip (EGS). The sample is complete for galaxies with stellar mass >109.5 Mȯ and redshift 0.4 < z < 1.2. In this redshift range, the Infrared Array Camera 3.6 μm band measures the rest-frame near-infrared band, permitting nearly unbiased selection with respect to both quiescent and star-forming galaxies. The numerous spectroscopic redshifts available in the EGS are used to train an artificial neural network to estimate photometric redshifts. The distribution of photometric redshift errors is Gaussian with standard deviation ∼0.025(1 + z), and the fraction of redshift failures (>3σ errors) is about 3.5%. A new method of validation based on pair statistics confirms the estimate of standard deviation even for galaxies lacking spectroscopic redshifts. Basic galaxy properties measured include rest-frame U-B colors, B- and K-band absolute magnitudes, and stellar masses. We divide the sample into quiescent and star-forming galaxies according to their rest-frame U-B colors and 24-3.6 μm flux density ratios and derive rest K-band luminosity functions and stellar mass functions for quiescent, star-forming, and all galaxies. The results show that massive, quiescent galaxies were in place by z ≈ 1, but lower mass galaxies generally ceased their star formation at later epochs. © 2013. The American Astronomical Society. All rights reserved..

Three-dimensional Keplerian orbit-superposition models of the nucleus of M31

(2013)

Authors:

Calum K Brown, John Magorrian

Local luminous infrared galaxies. III. co-evolution of black hole growth and star formation activity?

Astrophysical Journal 765:2 (2013)

Authors:

A Alonso-Herrero, M Pereira-Santaella, GH Rieke, AM Diamond-Stanic, Y Wang, A Hernán-Caballero, D Rigopoulou

Abstract:

Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and star formation (SF) activity, not necessarily associated with major mergers. Here, we use Spitzer/IRS spectroscopy of a complete volume-limited sample of local LIRGs (distances of <78 Mpc). We estimate typical BH masses of 3 × 107 M using [Ne III] 15.56 μm and optical [O III] λ5007 gas velocity dispersions and literature stellar velocity dispersions. We find that in a large fraction of local LIRGs, the current SFR is taking place not only in the inner nuclear ∼1.5 kpc region, as estimated from the nuclear 11.3 μm PAH luminosities, but also in the host galaxy. We next use the ratios between the SFRs and BH accretion rates (BHAR) to study whether the SF activity and BH growth are contemporaneous in local LIRGs. On average, local LIRGs have SFR to BHAR ratios higher than those of optically selected Seyferts of similar active galactic nucleus (AGN) luminosities. However, the majority of the IR-bright galaxies in the revised-Shapley-Ames Seyfert sample behave like local LIRGs. Moreover, the AGN incidence tends to be higher in local LIRGs with the lowest SFRs. All of this suggests that in local LIRGs there is a distinct IR-bright star-forming phase taking place prior to the bulk of the current BH growth (i.e., AGN phase). The latter is reflected first as a composite and then as a Seyfert, and later as a non-LIRG optically identified Seyfert nucleus with moderate SF in its host galaxy. © 2013. The American Astronomical Society. All rights reserved.

Confronting predictions of the galaxy stellar mass function with observations at high redshift

Monthly Notices of the Royal Astronomical Society 429:3 (2013) 2098-2103

Authors:

SM Wilkins, T Di Matteo, R Croft, N Khandai, Y Feng, A Bunker, W Coulton

Abstract:

We investigate the evolution of the galaxy stellar mass function at high redshift (z ≥ 5) using a pair of large cosmological hydrodynamical simulations: MassiveBlack and Massive Black-II. By combining these simulations, we can study the properties of galaxies with stellar masses greater than 108M⊙ h-1 and (comoving) number densities of log10(φ [Mpc-3 dex-1 h3]) > -8. Observational determinations of the galaxy stellar mass function at very high redshift typically assume a relation between the observed ultraviolet (UV) luminosity and stellar massto- light ratio which is applied to high-redshift samples in order to estimate stellar masses. This relation can also be measured from the simulations. We do this, finding two significant differences with the usual observational assumption: it evolves strongly with redshift and has a different shape. Using this relation to make a consistent comparison between galaxy stellar mass functions, we find that at z=6 and above the simulation predictions are in good agreement with observed data over the whole mass range. Without using the correct UV luminosity and stellar mass-to-light ratio, the discrepancy would be up to two orders of magnitude for large galaxies (>1010M⊙ h-1). At z = 5, however, the stellar mass function for low-mass galaxies (<109M⊙ h-1) is overpredicted by factors of a few, consistent with the behaviour of the UV luminosity function, and perhaps a sign that feedback in the simulation is not efficient enough for these galaxies. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.