Observable Signatures of EMRI Black Hole Binaries Embedded in Thin Accretion Disks

(2011)

Authors:

Bence Kocsis, Nicolas Yunes, Abraham Loeb

The Planetary Nebulae Population in the Central Regions of M32: the SAURON view

(2011)

Authors:

Marc Sarzi, Gary Mamon, Michele Cappellari, Eric Emsellem, Roland Bacon, Roger L Davies, P Tim de Zeeuw

Exploring the nature of the brightest hyper-luminous X-ray source

Astronomische Nachrichten 332:4 (2011) 392-397

Authors:

SA Farrell, M Servillat, K Wiersema, D Barret, O Godet, I Heywood, TJ Maccarone, SR Oates, B Plazolles, NA Webb

Abstract:

The small subset of hyper-luminous X-ray sources with luminosities in excess of ~1041 erg s-1 are hard to explain without the presence of an intermediate mass black hole, as significantly super-Eddington accretion and/or very small beaming angles are required. The recent discovery of HLX-1, the most luminous object in this class with a record breaking luminosity of ~1042 erg s-1 in the galaxy ESO 243-49, therefore currently provides some of the strongest evidence for the existence of intermediate mass black holes. HLX-1 is almost an order of magnitude brighter than the other hyperluminous sources, and appears to exhibit X-ray spectral and flux variability similar to Galactic stellar mass black hole X-ray binaries. In this paper we review the current state of knowledge on this intriguing source and outline the results of multi-wavelength studies from radio to ultra-violet wavelengths, including imaging and spectroscopy of the recently identified optical counterpart obtained with the Very Large Telescope. These results continue to support an intermediate mass black hole in excess of 500 M⊙. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Galactic star formation in parsec-scale resolution simulations

Proceedings of the International Astronomical Union 6:S270 (2011) 487-490

Authors:

LC Powell, F Bournaud, D Chapon, J Devriendt, A Slyz, R Teyssier

Abstract:

The interstellar medium (ISM) in galaxies is multiphase and cloudy, with stars forming in the very dense, cold gas found in Giant Molecular Clouds (GMCs). Simulating the evolution of an entire galaxy, however, is a computational problem which covers many orders of magnitude, so many simulations cannot reach densities high enough or temperatures low enough to resolve this multiphase nature. Therefore, the formation of GMCs is not captured and the resulting gas distribution is smooth, contrary to observations. We investigate how star formation (SF) proceeds in simulated galaxies when we obtain parsec-scale resolution and more successfully capture the multiphase ISM. Both major mergers and the accretion of cold gas via filaments are dominant contributors to a galaxy's total stellar budget and we examine SF at high resolution in both of these contexts. © 2011 International Astronomical Union.

How AGN feedback and metal cooling shape cluster entropy profiles

ArXiv 1104.0171 (2011)

Authors:

Yohan Dubois, Julien Devriendt, Romain Teyssier, Adrianne Slyz

Abstract:

Observed clusters of galaxies essentially come in two flavors: non cool core clusters characterized by an isothermal temperature profile and a central entropy floor, and cool-core clusters where temperature and entropy in the central region are increasing with radius. Using cosmological resimulations of a galaxy cluster, we study the evolution of its intracluster medium (ICM) gas properties, and through them we assess the effect of different (sub-grid) modelling of the physical processes at play, namely gas cooling, star formation, feedback from supernovae and active galactic nuclei (AGN). More specifically we show that AGN feedback plays a major role in the pre-heating of the proto-cluster as it prevents a high concentration of mass from collecting in the center of the future galaxy cluster at early times. However, AGN activity during the cluster's later evolution is also required to regulate the mass flow into its core and prevent runaway star formation in the central galaxy. Whereas the energy deposited by supernovae alone is insufficient to prevent an overcooling catastrophe, supernovae are responsible for spreading a large amount of metals at high redshift, enhancing the cooling efficiency of the ICM gas. As the AGN energy release depends on the accretion rate of gas onto its central black hole engine, the AGN responds to this supernova enhanced gas accretion by injecting more energy into the surrounding gas, and as a result increases the amount of early pre-heating. We demonstrate that the interaction between an AGN jet and the ICM gas that regulates the growth of the AGN's BH, can naturally produce cool core clusters if we neglect metals. However, as soon as metals are allowed to contribute to the radiative cooling, only the non cool core solution is produced.