The skeleton: Connecting large scale structures to galaxy formation
AIP Conference Proceedings 1241 (2010) 1108-1117
Abstract:
We report on two quantitative, morphological estimators of the filamentary structure of the Cosmic Web, the so-called global and local skeletons. The first, based on a global study of the matter density gradient flow, allows us to study the connectivity between a density peak and its surroundings, with direct relevance to the anisotropic accretion via cold flows on galactic halos. From the second, based on a local constraint equation involving the derivatives of the field, we can derive predictions for powerful statistics, such as the differential length and the relative saddle to extrema counts of the Cosmic web as a function of density threshold (with application to percolation of structures and connectivity), as well as a theoretical framework to study their cosmic evolution through the onset of gravity-induced non-linearities. © 2010 American Institute of Physics.The Einstein Cross: Constraint on dark matter from stellar dynamics and gravitational lensing
Astrophysical Journal 719:2 (2010) 1481-1496
Abstract:
We present two-dimensional line-of-sight stellar kinematics of the lens galaxy in the Einstein Cross, obtained with the GEMINI 8 m telescope, using the GMOS integral-field spectrograph. The stellar kinematics extend to a radius of 4″ (with 0.″2 spaxels), covering about two-thirds of the effective (or half-light) radius Re - 6″ of this early-type spiral galaxy at redshift zl ≃ 0.04, of which the bulge is lensing a background quasar at redshift zs ≃ 1.7. The velocity map shows regular rotation up to ∼100 km s-1 around the minor axis of the bulge, consistent with axisymmetry. The velocity dispersion map shows a weak gradient increasing toward a central (R < 1″) value of σ0 = 170 ± 9 km s-1. We deproject the observed surface brightness from Hubble Space Telescope imaging to obtain a realistic luminosity density of the lens galaxy, which in turn is used to build axisymmetric dynamical models that fit the observed kinematic maps. We also construct a gravitational lens model that accurately fits the positions and relative fluxes of the four quasar images. We combine these independent constraints from stellar dynamics and gravitational lensing to study the total mass distribution in the inner parts of the lens galaxy. We find that the resulting luminous and total mass distribution are nearly identical around the Einstein radius Re = 0″.89, with a slope that is close to isothermal, but which becomes shallower toward the center if indeed mass follows light. The dynamical model fits to the observed kinematic maps result in a total mass-to-light ratio γdyn = 3.7 ± 0.5 γ⊙,I (in the I band). This is consistent with the Einstein mass Me = 1.54 × 1010 M⊙ divided by the (projected) luminosity within Re, which yields a total mass-to-light ratio of γE = 3.4 γ⊙,I, with an error of at most a few percent. We estimate from stellar population model fits to colors of the lens galaxy a stellar mass-to-light ratio γ* from 2.8 to 4.1 γ⊙,I. Although a constant dark matter fraction of 20% is not excluded, dark matter may play no significant role in the bulge of this ∼L* early-type spiral galaxy. © 2010. The American Astronomical Society.A doubled double hotspot in J0816+5003 and the logarithmic slope of the lensing potential
ArXiv 1008.3273 (2010)
Abstract:
We present an analysis of observations of the doubly-lensed double hotspot in the giant radio galaxy J0816+5003 from MERLIN, MDM, WIYN, WHT, UKIRT and the VLA. The images of the two hotspot components span a factor of two in radius on one side of the lensing galaxy at impact parameters of less than 500pc. Hence we measure the slope of the lensing potential over a large range in radius, made possible by significant improvement in the accuracy of registration of the radio and optical frame and higher resolution imaging data than previously available. We also infer the lens and source redshifts to be 0.332 and > 1 respectively. Purely on the basis of lens modelling, and independently of stellar velocity dispersion measurements, we find the potential to be very close to isothermal.The Tully-Fisher relations of early-type spiral and S0 galaxies
(2010)