Evolution of dust temperature of galaxies through cosmic time as seen by Herschel
Monthly Notices of the Royal Astronomical Society 409:1 (2010) 75-82
Abstract:
We study the dust properties of galaxies in the redshift range 0.1 ≲z≲ 2.8 observed by the Herschel Space Observatory in the field of the Great Observatories Origins Deep Survey-North as part of the PACS Extragalactic Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) key programmes. Infrared (IR) luminosity (LIR) and dust temperature (Tdust) of galaxies are derived from the spectral energy distribution fit of the far-IR (FIR) flux densities obtained with the PACS and SPIRE instruments onboard Herschel. As a reference sample, we also obtain IR luminosities and dust temperatures of local galaxies at z < 0.1 using AKARI and IRAS data in the field of the Sloan Digital Sky Survey. We compare the LIR-Tdust relation between the two samples and find that the median Tdust of Herschel-selected galaxies at z< 0.5 with LIR≲ 5 × 1010L· appears to be 2-5 K colder than that of AKARI-selected local galaxies with similar luminosities, and the dispersion in Tdust for high-z galaxies increases with LIR due to the existence of cold galaxies that are not seen among local galaxies. We show that this large dispersion of the LIR-Tdust relation can bridge the gap between local star-forming galaxies and high-z submillimetre galaxies (SMGs). We also find that three SMGs with very low Tdust (≲20 K) covered in this study have close neighbouring sources with similar 24-μm brightness, which could lead to an overestimation of FIR/(sub)millimetre fluxes of the SMGs. © 2010 The Authors. Journal compilation © 2010 RAS.First results from HerMES on the evolution of the submillimetre luminosity function
Astronomy and Astrophysics 518:8 (2010)
Abstract:
We have carried out two extremely deep surveys with SPIRE, one of the two cameras on Herschel, at 250 μm, close to the peak of the far-infrared background. We have used the results to investigate the evolution of the rest-frame 250-μm luminosity function out to z = 2. We find evidence for strong evolution out to z ≃ 1 but evidence for at most weak evolution beyond this redshift. Our results suggest that a significant part of the stars and metals in the universe today were formed at z ≤ 1.4 in spiral galaxies. © 2010 ESO.Formation of slowly rotating early-type galaxies via major mergers: a resolution study
Monthly Notices of the Royal Astronomical Society 406:4 (2010) 2405-2420
Abstract:
We study resolution effects in numerical simulations of gas-rich and gas-poor major mergers, and show that the formation of slowly rotating elliptical galaxies often requires a resolution that is beyond the present-day standards to be properly modelled. Our sample of equal-mass merger models encompasses various masses and spatial resolutions, ranging from about 200 pc and 105 particles per component (stars, gas and dark matter), i.e. a gas mass resolution of ∼105 M⊙, typical of some recently published major merger simulations, to up to 32 pc and ∼103 M⊙ in simulations using 2.4 × 107 collisionless particles and 1.2 × 107 gas particles, among the highest resolutions reached so far for gas-rich major merger of massive disc galaxies. We find that the formation of fast-rotating early-type galaxies, that are flattened by a significant residual rotation, is overall correctly reproduced at all such resolutions. However, the formation of slow-rotating early-type galaxies, which have a low-residual angular momentum and are supported mostly by anisotropic velocity dispersions, is strongly resolution-dependent. The evacuation of angular momentum from the main stellar body is largely missed at standard resolution, and systems that should be slow rotators are then found to be fast rotators. The effect is most important for gas-rich mergers, but is also witnessed in mergers with an absent or modest gas component (0-10 per cent in mass). The effect is robust with respect to our initial conditions and interaction orbits, and originates in the physical treatment of the relaxation process during the coalescence of the galaxies. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of gas-rich mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. Moreover, the effect of gas in a galaxy merger is not limited to helping the survival/rebuilding of rotating disc components: at high resolution, gas actively participates in the relaxation process and the formation of slowly rotating stellar systems. © 2010 The Authors. Journal compilation © 2010 RAS.Formation of slowly rotating elliptical galaxies in major mergers. A resolution study
AIP Conference Proceedings 1240 (2010) 405-406
Abstract:
We study resolution effects in numerical simulations of gas-rich (20% of the total baryonic mass) major mergers, and show that the formation of slowly-rotating elliptical galaxies requires a resolution that is beyond the present-day standards to be properly modelled. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of wet mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. © 2010 American Institute of Physics.GRB 090426: The environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609
Monthly Notices of the Royal Astronomical Society 401:2 (2010) 963-972