Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807
Monthly Notices of the Royal Astronomical Society 360:4 (2005) 1355-1372
Abstract:
This is the second in a series of papers dedicated to unveiling the mass structure and orbital content of a sample of flattened early-type galaxies in the Coma cluster. The ability of our orbit libraries to reconstruct internal stellar motions and the mass composition of a typical elliptical in the sample is investigated by means of Monte Carlo simulations of isotropic rotator models. The simulations allow a determination of the optimal amount of regularization needed in the orbit superpositions. It is shown that under realistic observational conditions and with the appropriate regularization, internal velocity moments can be reconstructed to an accuracy of ≈15 per cent; the same accuracy can be achieved for the circular velocity and dark matter fraction. In contrast, the flattening of the halo remains unconstrained. Regularized orbit superpositions are applied to a first galaxy in our sample, NGC 4807, for which stellar kinematical observations extend to 3 r eff. The galaxy seems dark-matter dominated outside r > 2 r eff. Logarithmic dark matter potentials are consistent with the data, as well as NFW profiles, mimicking logarithmic potentials over the observationally sampled radial range. In both cases, the derived stellar mass-to-light ratio Υ agrees well with independently obtained mass-to-light ratios from stellar population analysis. The achieved accuracy is ΔΥ ≈ 0.5. Kinematically, NGC 4807 is characterized by mild radial anisotropy outside r > 0.5 r eff, becoming isotropic towards the centre. Our orbit models hint at either a distinct stellar component or weak triaxiality in the outer parts of the galaxy. © 2005 RAS.VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO
(2005)
Obscured activity: AGN, quasars, starbursts and ULIGs observed by the infrared space observatory
Space Science Reviews 119:1-4 (2005) 355-407
Abstract:
Some of the most 'active' galaxies in the Universe are obscured by large quantities of dust and emit a substantial fraction of their bolometric luminosity in the infrared. Observations of these infrared luminous galaxies with the Infrared Space Observatory (ISO) have provided a relatively unabsorbed view to the sources fuelling this active emission. The improved sensitivity, spatial resolution and spectroscopic capability of ISO over its predecessor Infrared Astronomical Satellite (IRAS) of enabled significant advances in the understanding of the infrared properties of active galaxies. ISO surveyed a wide range of active galaxies which, in the context of this review, includes those powered by intense bursts of star formation as well as those containing a dominant active galactic nucleus (AGN). Mid-infrared imaging resolved for the first time the dust enshrouded nuclei in many nearby galaxies, while a new era in infrared spectroscopy was opened by probing a wealth of atomic, ionic and molecular lines as well as broad band features in the mid- and far-infrared. This was particularly useful, since it resulted in the understanding of the power production, excitation and fuelling mechanisms in the nuclei of active galaxies including the intriguing but so far elusive ultraluminous infrared galaxies. Detailed studies of various classes of AGN and quasars greatly improved our understanding of the unification scenario. Far-infrared imaging and photometry revealed the presence of a new very cold dust component in galaxies and furthered our knowledge of the far-infrared properties of faint starbursts, ULIGs and quasars. We summarise almost nine years of key results based on ISO data spanning the full range of luminosity and type of active galaxies. © Springer 2005.The discovery of a galaxy-wide superwind from a young massive galaxy at redshift z ~ 3
Nature 436 (2005) 227-229
Imaging of SDSS z > 6 quasar fields: Gravitational lensing, companion galaxies, and the host dark matter halos
Astrophysical Journal 626:2 I (2005) 657-665