Can Virialization Shocks be Detected Around Galaxy Clusters Through the Sunyaev-Zel'dovich Effect?

(2004)

Authors:

Bence Kocsis, Zoltan Haiman, Zsolt Frei

Mapping stationary axisymmetric phase-space distribution functions by orbit libraries

Monthly Notices of the Royal Astronomical Society 353:2 (2004) 391-404

Authors:

J Thomas, RP Saglia, R Bender, D Thomas, K Gebhardt, J Magorrian, D Richstone

Abstract:

This is the first of a series of papers dedicated to unveiling the mass composition and dynamical structure of a sample of flattened early-type galaxies in the Coma cluster. We describe our modifications to the Schwarzschild code of Richstone et al. Applying a Voronoi tessellation in the surface of section, we are able to assign accurate phase-space volumes to individual orbits and to reconstruct the full three-integral phase-space distribution function (DF) of any axisymmetric orbit library. Two types of tests have been performed to check the accuracy with which DFs can be represented by appropriate orbit libraries. First, by mapping DFs of spherical γ-models and flattened Plummer models onto the library, we show that the resulting line-of-sight velocity distributions and internal velocity moments of the library match those derived directly from the DF to a precision better than that of present-day observational errors. Secondly, by fitting libraries to the projected kinematics of the same DFs, we show that the DF reconstructed from the fitted library matches the input DF to a rms of about 15 per cent over a region in phase space covering 90 per cent of the mass of the library. The accuracy achieved allows us to implement effective entropy-based regularization to fit real, noisy and spatially incomplete data.

Extremely red objects in the Lockman hole

Astrophysical Journal, Supplement Series 154:1 (2004) 107-111

Authors:

G Wilson, JS Huang, PG Pérez-González, E Egami, RJ Ivison, JR Rigby, A Alonso-Herrero, P Barmby, H Dole, GG Fazio, E Le Floc'h, C Papovich, D Rigopoulou, L Bai, CW Engelbracht, D Frayer, KD Gordon, DC Hines, KA Misselt, S Miyazaki, JE Morrison, GH Rieke, MJ Rieke, J Surace

Abstract:

We investigate extremely red objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 μm) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the Infrared Array Camera (IRAC) camera allows us to detect 64 EROs (a surface density of 2.90 ± 0.36 arcmin-2; [3.6]AB < 23.7) in only 12 minutes of IRAC exposure time, by means of an R - [3.6] color cut (analogous to the traditional red R - K cut). A pure infrared K - [3.6] red cut detects a somewhat different population and may be more effective at selecting z > 1.3 EROs. We find ∼17% of all galaxies detected by IRAC at 3.6 or 4.5 μm to be EROs. These percentages rise to about 40% at 5.8 μm, and about 60% at 8.0 μm. We utilize the spectral bump at 1.6 μm to divide the EROs into broad redshift slices using only near-infrared colors (2.2/3.6/4.5 μm). We conclude that two-thirds of all EROs lie at redshift z > 1.3. Detections at 24 μm imply that at least 11% of 0.6 < z < 1.3 EROs and at least 22% of z > 1.3 EROs are dusty star-forming galaxies.

Infrared array camera (IRAC) imaging of the Lockman Hole

Astrophysical Journal, Supplement Series 154:1 (2004) 44-47

Authors:

JS Huang, P Barmby, GG Fazio, SP Willner, G Wilson, D Rigopoulou, A Alonso-Herrero, H Dole, E Egami, E Le Floc'h, C Papovich, PG Pérez-González, J Rigby, CW Engelbracht, K Gordon, D Hines, M Rieke, GH Rieke, K Meisenheimer, S Miyazaki

Abstract:

IRAC imaging of a 4′.7 x 4′.7 area in the Lockman Hole detected over 400 galaxies in the IRAC 3.6 and 4.5 μm bands, 120 in the 5.8 μm band, and 80 in the 8.0 μm band in 30 minutes of observing time. Color-color diagrams suggest that about half of these galaxies are at redshifts 0.6 < z < 1.3 with about a quarter at higher redshifts (z > 1.3). We also detect IRAC counterparts for six of the seven SCUBA sources and all nine XMM-Newton sources in this area. The detection of the counterparts of the SCUBA sources and galaxies at z > 1.3 demonstrates the ability of IRAC to probe the universe at very high redshifts.

The nature of luminous X-ray sources with mid-infrared counterparts

Astrophysical Journal, Supplement Series 154:1 (2004) 155-159

Authors:

A Alonso-Herrero, PG Pérez-González, J Rigby, GH Rieke, E Le Floc'h, P Barmby, MJ Page, C Papovich, H Dole, E Egami, JS Huang, D Rigopoulou, D Cristóbal-Hornillos, C Eliche-Moral, M Balcells, M Prieto, P Erwin, CW Engelbracht, KD Gordon, M Werner, SP Willner, GG Fazio, D Frayer, D Hines, D Kelly, W Latter, K Misselt, S Miyazaki, J Morrison, MJ Rieke, G Wilson

Abstract:

We investigate the luminous X-ray sources in the Lockman Hole (LH) and the extended Groth strip (EGS) detected at 24 μm using the Multiband Imaging Photometer (MIPS) and also with the Infrared Array Camera (IRAC) on board the Spitzer Space Telescope. We assemble optical/infrared spectral energy distributions (SEDs) for 45 X-ray/24 μm sources in the EGS and LH. Only about one-quarter of the hard X-ray/24 μm sources show pure type 1 active galactic nucleus (AGN) SEDs. More than half of the X-ray/24 μm sources have stellar emission-dominated or obscured SEDs, similar to those of local type 2 AGN and spiral/starburst galaxies. One-third of the sources detected in hard X-rays do not have a 24 μm counterpart. Two such sources in the LH have SEDs resembling those of S0/elliptical galaxies. The broad variety of SEDs in the optical-to-Spitzer bands of X-ray-selected AGNs means that AGNs selected according to the behavior in the optical/infrared will have to be supplemented by other kinds of data (e.g., X-ray) to produce unbiased samples of AGNs.