ISO observations of four active galaxies

(2003)

Authors:

Michel Dennefeld, Thomas Boller, Dimitra Rigopoulou, Henrik Spoon

Parametric Recovery of Line-of-Sight Velocity Distributions from Absorption-Line Spectra of Galaxies via Penalized Likelihood

(2003)

Authors:

Michele Cappellari, Eric Emsellem

A Search for Short Time-Scale Optical Variability in the GRB 030329 Afterglow

(2003)

Authors:

N Mirabal, JP Halpern, M Bureau, K Fathi

Hot Very Small dust Grains in NGC 1068 seen in jet induced structures thanks to VLT/NACO adaptive optics

ArXiv astro-ph/0312094 (2003)

Authors:

Daniel Rouan, Francois Lacombe, Eric Gendron, Damien Gratadour, Yann Clenet, Anne-Marie Lagrange, David Mouillet, Catherine Boisson, Gerard Rousset, Laurent Mugnier, Niranjan Thatte, Reinhard Genzel, Pierre Gigan, Robin Arsenault, Pierre Kern

Abstract:

We present K, L and M diffraction-limited images of NGC 1068 obtained with NAOS+CONICA at VLT/YEPUN over a 3.5" field around the central engine. Hot dust (Tcol = 550-650 K) is found in three different regions : (a) in the true nucleus, seen as a slightly NS elongated, core of extremely hot dust, "resolved" in K and L with respective diameters of ~5 pc and 8.5 pc ; (b) along the NS direction, as a "spiral arm" and a southern tongue ; (c) as a set of parallel elongated nodules ("wave-like") bracketting the jet. Several structures observed on radio maps, mid-IR or HST UV-visible maps are seen, so that a precise registration can be done from UV to 6 cm. These results do support the current interpretion that source (a) corresponds to emission from dust near sublimation temperature delimiting the walls of the cavity in the central obscuring torus. Structure (b) is thought to be a mixture of hot dust and active star forming regions along a micro spiral structure that could trace the tidal mechanism bringing matter to the central engine. Structure c)which was not known, exhibits too high a temperature for "classical'' grains ; it is most probably the signature of transiently heated very small dust grains (VSG) : "nano-diamonds", which are resistant and can form in strong UV field or in shocks, are very attractive candidates. The "waves'' can be condensations triggered by jet induced shocks, as predicted by recent models. First estimates, based on a simple VSG model and on a detailed radiative transfer model, do agree with those interpretations, both qualitatively and quantitatively.

3D spectroscopy of Z ∼ galaxies with Gemini

Astrophysics and Space Science 284:2 (2003) 973-976

Authors:

J Smith, A Bunker, R Bower

Abstract:

Area spectroscopy has significant advantages over both traditional imaging and long-slit spectroscopy: it is more efficient in observing time, and yields substantially more information. Through Integral Field Units, area spectroscopy is becoming an essential part of new facility instruments on the latest large telescopes. We have been undertaking a programme on the Gemini 8-m telescopes to demonstrate the power of integral field spectroscopy, using the optical GMOS spectrograph, and the new CIRPASS instrument in the near-infrared. Here we present some preliminary results from 3D spectroscopy of z ∼ 1 objects, mapping the emission lines in a 3CR radio galaxy and in a gravitationally lensed arc.