Non-linear evolution of suppressed dark matter primordial power spectra
Monthly Notices of the Royal Astronomical Society 360:1 (2005) 282-287
Abstract:
We address the degree and rapidity of generation of small-scale power over the course of structure formation in cosmologies where the primordial power spectrum is strongly suppressed beyond a given wavenumber. We first summarize the situations where one expects such suppressed power spectra and point out their diversity. We then employ an exponential cut-off, which characterizes warm dark matter (WDM) models, as a template for the shape of the cut-off and focus on damping scales ranging from 106 to 109 h -1 M⊙. Using high-resolution simulations, we show that the suppressed part of the power spectrum is quickly (re)generated and catches up with both the linear and the non-linear evolution of the unsuppressed power spectrum. From z = 2 onwards, a power spectrum with a primordial cut-off at 109 h-1 MŁódź, becomes virtually indistinguishable from an evolved cold dark matter (CDM) power spectrum. An attractor such as that described in Zaldarriaga, Scoccimarro & Hui for power spectra with different spectral indices also emerges in the case of truncated power spectra. Measurements of z ∼ 0 non-linear power spectra at ∼100 h-1 kpc cannot rule out the possibility of linear power spectra damped below ∼109 h-1 M ⊙. Therefore, WDM or scenarios with similar features should be difficult to exclude in this way. © 2005 RAS.A simple model for the evolution of supermassive black holes and the quasar population
Monthly Notices of the Royal Astronomical Society 359:4 (2005) 1363-1378
Near-infrared properties of i-drop galaxies in the Hubble ultra deep field
Monthly Notices of the Royal Astronomical Society 359:3 (2005) 1184-1192
Abstract:
We analyse near-infrared Hubble Space Telescope (HST)/Near-Infrared Camera and Multi-Object Spectrometer F110W (J) and F160W (H) band photometry of a sample of 27 i′-drop candidate z ≃ 6 galaxies in the central region of the HST/Advanced Camera for Surveys Ultra Deep Field. The infrared colours of the 20 objects not affected by near neighbours are consistent with a high-redshift interpretation. This suggests that the low-redshift contamination of this i′-drop sample is smaller than that observed at brighter magnitudes, where values of 10-40 per cent have been reported. The J-H colours are consistent with a slope flat in fThe nuclear orbital distribution in galaxies as a fossil record of black hole formation from integral-field spectroscopy
CLASSICAL QUANT GRAV 22:10 (2005) S347-S353
Abstract:
In the past decade, most effort in the study of supermassive black holes (BHs) has been devoted to measuring their masses. This led to the finding of the tight M-BH-sigma relation, which indicates the existence of strong links between the formation of the BHs and of their host spheroids. Many scenarios have been proposed to explain this relation, and all agree on the key role of BHs' growth and feedback in shaping their host galaxies. However, the currently available observational constraints, essentially BH masses and galaxy photometry, are not sufficient to conclusively select among the alternatives. A crucial piece of information on black-hole formation is recorded in the orbital distribution of the stars, which can only be extracted from high-resolution integral-field (IF) stellar kinematics. The introduction of IF spectrographs with adaptive optics on large telescopes opens a new era in the study of BHs by finally allowing this key element to be uncovered. This information will be complementary to what will be provided by the LISA gravitational wave satellite, which can directly detect coalescing BHs. Here, an example is presented for the recovery of the orbital distribution in the centre of the giant elliptical galaxy M87, which has a well-resolved BH sphere of influence, using SAURON IF kinematics.Star-formation in NGC 4038/4039 from broad- and narrow band photometry: Cluster Destruction?
ArXiv astro-ph/0505445 (2005)