Stellar Dynamics and the implications on the merger evolution in NGC6240

ArXiv astro-ph/0001424 (2000)

Authors:

M Tecza, R Genzel, LJ Tacconi, S Anders, LE Tacconi-Garman, N Thatte

Abstract:

We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.

Central UV Spikes in Two Galactic Spheroids

Chapter in The Formation of Galactic Bulges, Cambridge University Press (CUP) (2000) 191-194

Authors:

M Cappellari, F Bertola, D Burstein, LM Buson, L Greggio, A Renzini

Central UV spikes in two galactic spheroids

Formation of Galactic Bulges Cambridge University Press (2000) 191-194

Authors:

Michele Cappellari, F Bertola, D Burstein, LM Buson, L Greggio, A Renzini

Abstract:

FOS spectra and FOC photometry of two centrally located, UV-bright spikes in the elliptical galaxy NGC 4552 and the bulge-dominated early spiral NGC 2681, are presented. These spectra reveal that such point-like UV sources detected by means of HST within a relatively large fraction ~15% of bulges can be related to radically different phenomena. While the UV unresolved emission in NGC 4552 represents a transient event likely induced by an accretion event onto a supermassive black hole, the spike seen at the center of NGC 2681 is not variable and it is stellar in nature.

The Bulge-Disk Orthogonal Decoupling in Galaxies: NGC 4698 and NGC 4672

Chapter in The Formation of Galactic Bulges, Cambridge University Press (CUP) (2000) 165-169

Authors:

F Bertola, EM Corsini, M Cappellari, JC Vega Beltrán, A Pizzella, M Sarzi, JG Funes

Near infrared imaging spectroscopy of NGC1275

ArXiv astro-ph/0001052 (2000)

Authors:

Alfred Krabbe, Bruce J Sams III, Reinhard Genzel, Niranjan Thatte, Francisco Prada

Abstract:

We present H and K band imaging spectroscopy of the core regions of the cD/AGN galaxy NGC1275. The spectra, including lines from H2, H, 12CO bandheads, [FeII], and [FeIII], are exploited to constrain the star formation and excitation mechanisms in the galaxy's nucleus. The near-infrared properties can largely be accounted for by ionized gas in the NLR, dense molecular gas, and hot dust concentrated near the active nucleus of NGC1275. The strong and compact H2 emission is mostly from circumnuclear gas excited by the AGN and not from the cooling flow. The extended emission of latetype stars is diluted in the center by the thermal emission of hot dust.