Dynamical modeling of SAURON galaxies

Proceedings of IUTAM Symposia and Summer Schools IUTAM 3

Authors:

Michele Cappellari, RCEVD Bosch, EK Verolme, R Bacon, Martin Bureau, Y Copin, RL Davies, E Emsellem, D Krajnovic, H Kuntschner, R McDermid, BW Miller, RF Peletier, PTD Zeeuw

Abstract:

We describe our program for the dynamical modeling of early-type galaxies observed with the panoramic integral-field spectrograph SAURON. We are using Schwarzschild's numerical orbit superposition method to reproduce in detail all kinematical and photometric observables, and recover the intrinsic orbital structure of the galaxies. Since catastrophes are the most prominent features in the orbital observables, two-dimensional kinematical coverage is essential to constrain the dynamical models.

Early-type galaxy spin evolution in the Horizon-AGN simulation

The Astrophysical Journal University of Chicago Press

Authors:

H Choi, SK Yi, Y Dubois, T Kimm, JEG Devriendt, C Pichon

Abstract:

Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after $z \simeq 1$. We follow the spin evolution of 10,037 color-selected ETGs more massive than 10$^{10} \rm \, M_{\odot}$ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, $f_{\rm SR}$, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of $f_{\rm SR}$, a weak trend is seen in the mean value of spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of central ETGs of halos with $M_{vir} > 10^{12.5}\rm M_{\odot}$, but only 22% of satellite and field ETGs. We find that non-merger induced tidal perturbations better correlate with the galaxy spin-down in satellite ETGs than mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local ($z < 1$) universe.

Exploring the origin of thick disks using the NewHorizon and Galactica simulations

Authors:

Minjung J Park, Sukyoung K Yi, Sebastien Peirani, Christophe Pichon, Yohan Dubois, Hoseung Choi, Julien Devriendt, Sugata Kaviraj, Taysun Kimm, Katarina Kraljic, Marta Volonteri

Abstract:

Ever since the thick disk was proposed to explain the vertical distribution of the Milky Way disk stars, its origin has been a recurrent question. We aim to answer this question by inspecting 19 disk galaxies with stellar mass greater than $10^{10}\,\rm M_\odot$ in recent cosmological high-resolution zoom-in simulations: Galactica and NewHorizon. The thin and thick disks are reproduced by the simulations with scale heights and luminosity ratios that are in reasonable agreement with observations. When we spatially classify the disk stars into thin and thick disks by their heights from the galactic plane, the "thick" disk stars are older, less metal-rich, kinematically hotter, and higher in accreted star fraction than the "thin" disk counterparts. However, both disks are dominated by stellar particles formed in situ. We find that approximately half of the in-situ stars in the thick disks are formed even before the galaxies develop their disks, and the other half are formed in spatially and kinematically thinner disks and then thickened with time by heating. We thus conclude from our simulations that the thin and thick disk components are not entirely distinct in terms of formation processes, but rather markers of the evolution of galactic disks. Moreover, as the combined result of the thickening of the existing disk stars and the continued formation of young thin-disk stars, the vertical distribution of stars does not change much after the disks settle, pointing to the modulation of both orbital diffusion and star formation by the same confounding factor: the proximity of galaxies to marginal stability.

Feedback mechanisms stopping the star formation in a pair of massive galaxies in the early Universe

Authors:

Pablo Pérez-González, Francesco D'Eugenio, Bruno Rodríguez Del Pino, Michele Perna, Hannah Uebler, Roberto Maiolino, Santiago Arribas, Isabella Lamperti, Andrew Bunker, Stefano Carniani, Stéphane Charlot, Chris Willott, Torsten Böker, Eleonora Parlanti, Jan Scholtz, Giacomo Venturi, Guillermo Barro, Luca Costantin, Ignacio Martin Navarro, James Dunlop, Daniel Magee, Giovanni Cresci

Fornax A, Centaurus A and other radio galaxies as sources of ultra-high energy cosmic rays

Monthly Notices of the Royal Astronomical Society: Letters Blackwell Publishing

Authors:

JH Matthews, AR Bell, KM Blundell, AT Araudo

Abstract:

The origin of ultra-high energy cosmic rays (UHECRs) is still unknown. It has recently been proposed that UHECR anisotropies can be attributed to starbust galaxies or active galactic nuclei. We suggest that the latter is more likely and that giant-lobed radio galaxies such as Centaurus A and Fornax A can explain the data.