Multimessenger science opportunities with mHz gravitational waves
Abstract:
LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of astronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.Multimessenger science opportunities with mHz gravitational waves
Abstract:
LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of astronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.New Horizon: On the origin of the stellar disk and spheroid of field galaxies
Abstract:
The origin of the disk and spheroid of galaxies has been a key open question in understanding their morphology. Using the high-resolution cosmological simulation, New Horizon, we explore kinematically decomposed disk and spheroidal components of 144 field galaxies with masses greater than $\rm 10^9\,M_{\odot}$ at $z=0.7$. The origins of stellar particles are classified according to their birthplace (in situ or ex situ) and their orbits at birth. Before disk settling, stars form mainly through chaotic mergers between proto-galaxies and become part of the spheroidal component. When disk settling starts, we find that more massive galaxies begin to form disk stars from earlier epochs; massive galaxies commence to develop their disks at $z\sim1-2$, while low-mass galaxies do after $z\sim1$. The formation of disks is affected by accretion as well, as mergers can trigger gas turbulence or induce misaligned gas infall that prevents galaxies from forming co-rotating disk stars. The importance of accreted stars is greater in more massive galaxies, especially in developing massive spheroids. A significant fraction of the spheroids comes from the disk stars that are perturbed, which becomes more important at lower redshifts. Some ($\sim12.5\%$) of our massive galaxies develop counter-rotating disks from the gas infall misaligned with the existing disk plane, which can last for more than a Gyr until they become the dominant component, and flip the angular momentum of the galaxy in the opposite direction. The final disk-to-total ratio of a galaxy needs to be understood in relation to its stellar mass and accretion history. We quantify the significance of the stars with different origins and provide them as guiding values.Normal black holes in bulge-less galaxies: the largely quiescent, merger-free growth of black holes over cosmic time
MNRAS