Measuring the expansion velocity of the outflows of LS I +61 303 through low-frequency radio observations

AIP Conference Proceedings AIP Publishing 1792:1 (2017) 040018

Authors:

B Marcote, M Ribó, JM Paredes, CH Ishwara-Chandra, JD Swinbank, JW Broderick, S Markoff, R Fender, RAMJ Wijers, GG Pooley, AJ Stewart, ME Bell, RP Breton, D Carbone, S Corbel, J Eislöffel, H Falcke, J-M Grießmeier, M Kuniyoshi, M Pietka, A Rowlinson, M Serylak, AJ van der Horst, J van Leeuwen, MW Wise, P Zarka

Redshift measurement of Fermi blazars for the Cherenkov telescope array

AIP Conference Proceedings AIP Publishing 1792:1 (2017) 050025

Authors:

Santiago Pita, Paolo Goldoni, Catherine Boisson, Garret Cotter, Julien Lefaucheur, Jean-Philippe Lenain, Elina Lindfors, David A Williams

Cosmogenic gamma-rays and neutrinos constrain UHECR source models

Proceedings of Science (2017)

Authors:

A Van Vliet, JR Hörandel, RA Batista

Abstract:

Purpose. When ultra-high-energy cosmic rays (UHECRs) propagate through the universe they produce secondary neutrinos as well as photons, electrons and positrons (initiating electromagnetic cascades) in different kinds of interactions. These neutrinos and electromagnetic cascades are detected at Earth as isotropic extragalactic fluxes. The level of these fluxes can be predicted and used to constrain UHECR source models. Methods. The public astrophysical simulation framework CRPropa 3, designed for simulating the propagating extraterrestrial ultra-high energy particles, is ideally suited for this purpose. CRPropa includes all relevant UHECR interactions as well as secondary neutrino and electromagnetic cascade production and propagation. It is designed for high-performance computing and provides the flexibility to scan large parameter ranges of UHECR models. Results. The expected cosmogenic neutrino and gamma-ray spectra depend strongly on the evolution with redshift of the UHECR sources and on the chemical composition of UHECRs at injection. The isotropic diffuse gamma-ray background measured by Fermi/LAT is already close to touching upon a model with co-moving source evolution and with the chemical composition, spectral index and maximum acceleration energy optimized to provide the best fit to the UHECR spectrum and composition measured by the Pierre Auger Collaboration. Additionally, the detectable fraction of protons present at the highest energies in UHECRs is shown as a function of the evolution of UHECR sources for a range of sensitivities of neutrino detectors at an energy of ∼ 1 EeV. Conclusions. Neutrino and gamma-ray measurements are starting to constrain realistic UHECR models. Current and future neutrino experiments with sensitivities in the range of ∼ 10-8 - 10-10 GeV cm-2 s-1 sr-1 for the single-flavor neutrino flux at ∼ 1 EeV will be able to significantly constrain the proton fraction for realistic source evolution models.

Inauguration and first light of the GCT-M prototype for the Cherenkov Telescope Array

6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2016), Institute of Physics (2017)

Authors:

Jason J Watson, Andrea De Franco, A Abchiche, D Allan, J-P Amans, TP Armstrong, A Balzer, D Berge, C Boisson, J-J Bousquet, AM Brown, M Bryan, G Buchholtz, PM Chadwick, H Costantini, Garret Cotter, MK Daniel, F De Frondat, J-L Dournaux, D Dumas, J-P Ernenwein, G Fasola, S Funk, J Gironnet, JA Graham, T Greenshaw, O Hervet, N Hidaka, JA Hinton, J-M Huet, I Jegouzo, T Jogler, M Kraus, JS Lapington, P Laporte, J Lefaucheur, S Markoff, T Melse, L Mohrmann, P Molyneux, SJ Nolan, A Okumura, JP Osborne, RD Parsons, S Rosen, D Ross, G Rowell, CB Rulten, Y Sato, F Sayede

Abstract:

The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond contin-uously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure at the Observatoire de Paris-Meudon, where it observed the first Cherenkov light detected by a prototype instrument for CTA.

Morphological properties of blazar-induced gamma-ray haloes

Proceedings of Science Sissa Medialab Part F135186 (2017)

Authors:

Ra Batista, A Saveliev

Abstract:

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0). At TeV energies and above gamma rays can induce electromagnetic cascades, whose charged component is sensitive to intervening intergalactic magnetic fields (IGMFs). When interpreting gamma-ray measurements in the energy range between a few GeV and hundreds of TeV, one has to carefully account for effects due to IGMFs, which depend on their strength and power spectrum. Therefore, gamma-ray-induced electromagnetic cascades can be used as probes of cosmic magnetism, since their arrival distribution as well as spectral and temporal properties can provide unique information about IGMFs, whose origin and properties are currently poorly understood. In this contribution we present an efficient three-dimensional Monte Carlo code for simulations of gamma-ray propagation. We focus on the effects of different configurations of IGMFs, in particular magnetic helicity and the power spectrum of stochastic fields, on the morphology of the arrival directions of gamma rays, and discuss the prospects for detecting pair haloes around distant blazars.