Measuring the expansion velocity of the outflows of LS I +61 303 through low-frequency radio observations
AIP Conference Proceedings AIP Publishing 1792:1 (2017) 040018
Redshift measurement of Fermi blazars for the Cherenkov telescope array
AIP Conference Proceedings AIP Publishing 1792:1 (2017) 050025
Cosmogenic gamma-rays and neutrinos constrain UHECR source models
Proceedings of Science (2017)
Abstract:
Purpose. When ultra-high-energy cosmic rays (UHECRs) propagate through the universe they produce secondary neutrinos as well as photons, electrons and positrons (initiating electromagnetic cascades) in different kinds of interactions. These neutrinos and electromagnetic cascades are detected at Earth as isotropic extragalactic fluxes. The level of these fluxes can be predicted and used to constrain UHECR source models. Methods. The public astrophysical simulation framework CRPropa 3, designed for simulating the propagating extraterrestrial ultra-high energy particles, is ideally suited for this purpose. CRPropa includes all relevant UHECR interactions as well as secondary neutrino and electromagnetic cascade production and propagation. It is designed for high-performance computing and provides the flexibility to scan large parameter ranges of UHECR models. Results. The expected cosmogenic neutrino and gamma-ray spectra depend strongly on the evolution with redshift of the UHECR sources and on the chemical composition of UHECRs at injection. The isotropic diffuse gamma-ray background measured by Fermi/LAT is already close to touching upon a model with co-moving source evolution and with the chemical composition, spectral index and maximum acceleration energy optimized to provide the best fit to the UHECR spectrum and composition measured by the Pierre Auger Collaboration. Additionally, the detectable fraction of protons present at the highest energies in UHECRs is shown as a function of the evolution of UHECR sources for a range of sensitivities of neutrino detectors at an energy of ∼ 1 EeV. Conclusions. Neutrino and gamma-ray measurements are starting to constrain realistic UHECR models. Current and future neutrino experiments with sensitivities in the range of ∼ 10-8 - 10-10 GeV cm-2 s-1 sr-1 for the single-flavor neutrino flux at ∼ 1 EeV will be able to significantly constrain the proton fraction for realistic source evolution models.Inauguration and first light of the GCT-M prototype for the Cherenkov Telescope Array
6th International Symposium on High-Energy Gamma-Ray Astronomy (Gamma2016), Institute of Physics (2017)
Abstract:
The Gamma-ray Cherenkov Telescope (GCT) is a candidate for the Small Size Telescopes (SSTs) of the Cherenkov Telescope Array (CTA). Its purpose is to extend the sensitivity of CTA to gamma-ray energies reaching 300 TeV. Its dual-mirror optical design and curved focal plane enables the use of a compact camera of 0.4 m diameter, while achieving a field of view of above 8 degrees. Through the use of the digitising TARGET ASICs, the Cherenkov flash is sampled once per nanosecond contin-uously and then digitised when triggering conditions are met within the analogue outputs of the photosensors. Entire waveforms (typically covering 96 ns) for all 2048 pixels are then stored for analysis, allowing for a broad spectrum of investigations to be performed on the data. Two prototypes of the GCT camera are under development, with differing photosensors: Multi-Anode Photomultipliers (MAPMs) and Silicon Photomultipliers (SiPMs). During November 2015, the GCT MAPM (GCT-M) prototype camera was integrated onto the GCT structure at the Observatoire de Paris-Meudon, where it observed the first Cherenkov light detected by a prototype instrument for CTA.Morphological properties of blazar-induced gamma-ray haloes
Proceedings of Science Sissa Medialab Part F135186 (2017)