The Giant Radio Array for Neutrino Detection (GRAND): Present and perspectives
Proceedings of Science (2017)
Abstract:
The Giant Radio Array for Neutrino Detection (GRAND) aims at detecting ultra-high energy extraterrestrial neutrinos via the extensive air showers induced by the decay of tau leptons created in the interaction of neutrinos under the Earth's surface. Consisting of an array of ∼105 radio antennas deployed over ∼2 × 105km2, GRAND plans to reach, for the first time, an all-flavor sensitivity of ∼1.5 × 10-10GeVcm-2 s-1 sr-1 above 5 × 1017 eV and a sub-degree angular resolution, beyond the reach of other planned detectors. We describe here preliminary designs and simulation results, plans for the ongoing, staged approach to the construction of GRAND, and the rich research program made possible by GRAND's design sensitivity and angular resolution.The Giant Radio Array for Neutrino Detection (GRAND): Present and perspectives
Proceedings of Science Sissa Medialab Part F135186 (2017)
Abstract:
© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International License (CC BY-NC-ND 4.0). The Giant Radio Array for Neutrino Detection (GRAND) aims at detecting ultra-high energy extraterrestrial neutrinos via the extensive air showers induced by the decay of tau leptons created in the interaction of neutrinos under the Earth's surface. Consisting of an array of ∼10 5 radio antennas deployed over ∼2 × 10 5 km 2 , GRAND plans to reach, for the first time, an all-flavor sensitivity of ∼1.5 × 10 -10 GeVcm -2 s -1 sr -1 above 5 × 10 17 eV and a sub-degree angular resolution, beyond the reach of other planned detectors. We describe here preliminary designs and simulation results, plans for the ongoing, staged approach to the construction of GRAND, and the rich research program made possible by GRAND's design sensitivity and angular resolution.The gamma-ray Cherenkov telescope for the Cherenkov telescope array
6th International Meeting on High Energy Gamma-Ray Astronomy American Instiute of Physics (2017)
Abstract:
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.Accretion Disc Winds
Chapter in DISC WINDS MATTER: MODELLING ACCRETION AND OUTFLOWS ON ALL SCALES, (2017) 39-75
Disc Winds Matter Modelling Accretion and Outflows on All Scales Introduction
Chapter in DISC WINDS MATTER: MODELLING ACCRETION AND OUTFLOWS ON ALL SCALES, (2017) 1-38