Evidence for γ-ray emission from the remnant of Kepler’s supernova based on deep H.E.S.S. observations⋆
Astronomy & Astrophysics EDP Sciences 662 (2022) a65
Long-term rotational and emission variability of 17 radio pulsars
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 513:4 (2022) 5861-5880
A Decade of Black-Hole X-ray Binary Transients
Proceedings of Science 401 (2022)
Abstract:
The last decade has seen a significant gain in both space and ground-based monitoring capabilities, producing vastly better coverage of BH X-ray binaries during their (rare) transient events. This interval included two of the three brightest X-ray outbursts ever observed, namely V404 Cyg in 2015, and MAXI J1820+070 in 2018, as well as the outburst of Swift J1357.2-0933, the first such system to show variable period optical dipping. There are now superb multi-wavelength archives of these outbursts, both photometric and spectroscopic, that show substantial outflows in the form of jets and disc winds, and X-ray spectroscopy/timing that reveals how the inner accretion disc evolves. The ground-based AAVSO optical monitoring of the MAXI J1820+070 event was the most extensive ever obtained, revealing periodic variations that evolved as it approached its state transition. These modulations were of an amplitude never seen before, and suggested the development of an irradiation-driven disc warp that persisted through the transition. All these results have demonstrated the power of extensive multi-wavelength photometric and spectroscopic monitoring on all time-scales.Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s
Nature Astronomy Springer Nature 6:7 (2022) 828-836
Abstract:
The radio-emitting neutron star population encompasses objects with spin periods ranging from milliseconds to tens of seconds. As they age and spin more slowly, their radio emission is expected to cease. We present the discovery of an ultra-long period radio-emitting neutron star, PSR J0901-4046, with spin properties distinct from the known spin and magnetic-decay powered neutron stars. With a spin-period of 75.88 s, a characteristic age of 5.3 Myr, and a narrow pulse duty-cycle, it is uncertain how radio emission is generated and challenges our current understanding of how these systems evolve. The radio emission has unique spectro-temporal properties such as quasi-periodicity and partial nulling that provide important clues to the emission mechanism. Detecting similar sources is observationally challenging, which implies a larger undetected population. Our discovery establishes the existence of ultra-long period neutron stars, suggesting a possible connection to the evolution of highly magnetized neutron stars, ultra-long period magnetars, and fast radio bursts.VLBI observations of GRB 201015A, a relatively faint GRB with a hint of Very High Energy gamma-ray emission
(2022)