A circumbinary disc model for the variability of the eclipsing binary CoRoT 223992193
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 454:4 (2015) 3472-3479
The EChO science case
Experimental Astronomy Springer Nature 40:2-3 (2015) 329-391
The physics of Martian weather and climate: a review
Reports on Progress in Physics IOP Publishing 78:12 (2015) 125901
Abstract:
The planet Mars hosts an atmosphere that is perhaps the closest in terms of its meteorology and climate to that of the Earth. But Mars differs from Earth in its greater distance from the Sun, its smaller size, its lack of liquid oceans and its thinner atmosphere, composed mainly of CO2. These factors give Mars a rather different climate to that of the Earth. In this article we review various aspects of the martian climate system from a physicist's viewpoint, focusing on the processes that control the martian environment and comparing these with corresponding processes on Earth. These include the radiative and thermodynamical processes that determine the surface temperature and vertical structure of the atmosphere, the fluid dynamics of its atmospheric motions, and the key cycles of mineral dust and volatile transport. In many ways, the climate of Mars is as complicated and diverse as that of the Earth, with complex nonlinear feedbacks that affect its response to variations in external forcing. Recent work has shown that the martian climate is anything but static, but is almost certainly in a continual state of transient response to slowly varying insolation associated with cyclic variations in its orbit and rotation. We conclude with a discussion of the physical processes underlying these long- term climate variations on Mars, and an overview of some of the most intriguing outstanding problems that should be a focus for future observational and theoretical studies.A Lorenz/Boer energy budget for the atmosphere of Mars from a "reanalysis" of spacecraft observations
Geophysical Research Letters American Geophysical Union 42:20 (2015) 8320-8327
Abstract:
We calculate a Lorenz energy budget for the Martian atmosphere from reanalysis derived from Mars Global Surveyor data for Mars years 24-27. We present global, annual mean energy and conversion rates per unit area and per unit mass and compare these to Earth data. The directions of the energy conversion terms for Mars are similar to Earth, with the exception of the barotropic conversion between zonal and eddy kinetic energy reservoirs. Further, seasonal and hemispheric decomposition reveals a strong conversion between zonal energy reservoirs over the year, but these balance each other out in global and annual mean. On separating the diurnal timescale, the contribution to the conversion terms and eddy kinetic energy for diurnal and shorter timescales in many cases (especially during planet-encircling dust storms) exceeds the contribution of longer timescales. This suggests that thermal tides have a significant effect on the generation of eddy kinetic energy. Key Points Comprehensive analysis of global and hemispheric energy exchanges within the Mars atmosphere Thermal tides have a significant impact on eddy energy and conversion terms Most conversion occurs in zonal component but is canceled out in annual and global meanOverview of MAST results
Nuclear Fusion IOP Publishing 55:10 (2015) 104008