Eccentricity pumping of a planet on an inclined orbit by a disc
Monthly Notices of the Royal Astronomical Society 404:1 (2010) 409-414
Abstract:
In this paper, we show that the eccentricity of a planet on an inclined orbit with respect to a disc can be pumped up to high values by the gravitational potential of the disc, even when the orbit of the planet crosses the disc plane. This process is an extension of the Kozai effect. If the orbit of the planet is well inside the disc inner cavity, the process is formally identical to the classical Kozai effect. If the planet's orbit crosses the disc but most of the disc mass is beyond the orbit, the eccentricity of the planet grows when the initial angle between the orbit and the disc is larger than some critical value which may be significantly smaller than the classical value of 39{ring operator}. Both the eccentricity and the inclination angle then vary periodically with time. When the period of the oscillations of the eccentricity is smaller than the disc lifetime, the planet may be left on an eccentric orbit as the disc dissipates. © 2010 The Authors. Journal compilation. © 2010 RAS.On the dynamics of multiple systems of hot super-Earths and Neptunes: Tidal circularization, resonance and the HD 40307 system
Monthly Notices of the Royal Astronomical Society 405:1 (2010) 573-592
Abstract:
In this paper, we consider the dynamics of a system of hot super-Earths or Neptunes such as HD 40307. We show that, as tidal interaction with the central star leads to small eccentricities, the planets in this system could be undergoing resonant coupling even though the period ratios depart significantly from very precise commensurability. In a three-planet system, this is indicated by the fact that resonant angles librate or are associated with long-term changes to the orbital elements. In HD 40307, we expect that three resonant angles could be involved in this way. We propose that the planets in this system were in a strict Laplace resonance while they migrated through the disc. After entering the disc inner cavity, tidal interaction would cause the period ratios to increase from two but with the inner pair deviating less than the outer pair, counter to what occurs in HD 40307. However, the relationship between these pairs that occur in HD 40307 might be produced if the resonance is impulsively modified by an event like a close encounter shortly after the planetary system decouples from the disc. We find this to be in principle possible for a small relative perturbation on the order of a few ×10-3, but then we find that the evolution to the present system in a reasonable time is possible only if the masses are significantly larger than the minimum masses and the tidal dissipation is very effective. On the other hand, we found that a system like HD 40307 with minimum masses and more realistic tidal dissipation could be produced if the eccentricity of the outermost planet was impulsively increased to ∼0.15. We remark that the form of resonantly coupled tidal evolution we consider here is quite general and could be of greater significance for systems with inner planets on significantly shorter orbital periods characteristic of, for example, CoRoT 7 b. © 2010 The Authors. Journal compilation © 2010 RAS.Saturn's emitted power
Journal of Geophysical Research: Planets 115:11 (2010)
Abstract:
Long-term (2004-2009) on-orbit observations by Cassini Composite Infrared Spectrometer are analyzed to precisely measure Saturn's emitted power and its meridional distribution. Our evaluations suggest that the average global emitted power is 4.952 ± 0.035 W m-2 during the period of 2004-2009. The corresponding effective temperature is 96.67 ± 0.17 K. The emitted power is 16.6% higher in the Southern Hemisphere than in the Northern Hemisphere. From 2005 to 2009, the global mean emitted power and effective temperature decreased by ∼2% and ∼0.5%, respectively. Our study further reveals the interannual variability of emitted power and effective temperature between the epoch of Voyager (∼1 Saturn year ago) and the current epoch of Cassini, suggesting changes in the cloud opacity from year to year on Saturn. The seasonal and interannual variability of emitted power implies that the energy balance and internal heat are also varying. Copyright © 2010 by the American Geophysical Union.Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: Seasonal variations in zonal mean temperature, dust, and water ice aerosols
Journal of Geophysical Research: Planets 115:12 (2010)
Abstract:
The first Martian year and a half of observations by the Mars Climate Sounder aboard the Mars Reconnaissance Orbiter has revealed new details of the thermal structure and distributions of dust and water ice in the atmosphere. The Martian atmosphere is shown in the observations by the Mars Climate Sounder to vary seasonally between two modes: a symmetrical equinoctial structure with middle atmosphere polar warming and a solstitial structure with an intense middle atmosphere polar warming overlying a deep winter polar vortex. The dust distribution, in particular, is more complex than appreciated before the advent of these high (∼5 km) vertical resolution observations, which extend from near the surface to above 80 km and yield 13 dayside and 13 nightside pole-to-pole cross sections each day. Among the new features noted is a persistent maximum in dust mass mixing ratio at 15-25 km above the surface (at least on the nightside) during northern spring and summer. The water ice distribution is very sensitive to the diurnal and seasonal variation of temperature and is a good tracer of the vertically propagating tide. Copyright 2010 by the American Geophysical Union.Synchronization in climate dynamics and other extended systems
Understanding Complex Systems 2010 (2010) 153-176