Long-lived eddies in the laboratory and in the atmospheres of Jupiter and Saturn

Nature Springer Nature 302:5904 (1983) 126-129

Authors:

PL Read, R Hide

The analysis of umkehr observations of stratospheric ozone by a ‘Maximum Entropy’ method

Quarterly Journal of the Royal Meteorological Society Wiley 108:457 (1982) 719-726

Ariel: Enabling planetary science across light-years

Authors:

Giovanna Tinetti, Paul Eccleston, Carole Haswell, Pierre-Olivier Lagage, Jérémy Leconte, Theresa Lüftinger, Giusi Micela, Michel Min, Göran Pilbratt, Ludovic Puig, Mark Swain, Leonardo Testi, Diego Turrini, Bart Vandenbussche, Maria Rosa Zapatero Osorio, Anna Aret, Jean-Philippe Beaulieu, Lars Buchhave, Martin Ferus, Matt Griffin, Manuel Guedel, Paul Hartogh, Pedro Machado, Giuseppe Malaguti, Enric Pallé

Abstract:

Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution.

CoRoT 223992193: Investigating the variability in a low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk

Astronomy and Astrophysics Springer Verlag

Authors:

E Gillen, S Aigrain, Caroline Terquem, J Bouvier, SHP Alencar, D Gandolfi, J Stauffer, A Cody, L Venuti, PV Almeida, G Micela, F Favata, HJ Deeg

Large Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission

Authors:

Life collaboration, Sp Quanz, M Ottiger, E Fontanet, J Kammerer, F Menti, F Dannert, A Gheorghe, O Absil, Vs Airapetian, E Alei, R Allart, D Angerhausen, S Blumenthal, J Cabrera, Ó Carrión-González, G Chauvin, Wc Danchi, C Dandumont, D Defrère, C Dorn, D Ehrenreich, S Ertel, M Fridlund, A García Muñoz

Abstract:

One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale. We seek to quantify the exoplanet detection performance of a space-based mid-infrared nulling interferometer that measures the thermal emission of exoplanets. For this, we have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect over a certain time period. Two different scenarios to distribute the observing time among the stellar targets are discussed and different apertures sizes and wavelength ranges are considered. Within a 2.5-year initial search phase, an interferometer consisting of four 2 m apertures covering a wavelength range between 4 and 18.5 $\mu$m could detect up to ~550 exoplanets with radii between 0.5 and 6 R$_\oplus$ with an integrated SNR$\ge$7. At least ~160 of the detected exoplanets have radii $\le$1.5 R$_\oplus$. Depending on the observing scenario, ~25-45 rocky exoplanets (objects with radii between 0.5 and 1.5 $_{\oplus}$) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four times 3.5 m aperture size, the total number of detections can increase to up to ~770, including ~60-80 rocky, eHZ planets. With four times 1 m aperture size, the maximum detection yield is ~315 exoplanets, including $\le$20 rocky, eHZ planets. In terms of predicted detection yield, such a mission can compete with large single-aperture reflected light missions. (abridged)