Exploring a New Population of Compact Objects: X-ray and IR Observations of the Galactic Centre

ArXiv 0808.0519 (2008)

Authors:

Reba M Bandyopadhyay, Andrew J Gosling, Stephen E Eikenberry, Michael P Muno, Katherine M Blundell, Philipp Podsiadlowski, Valerie J Mikles, Curtis DeWitt

Abstract:

I describe the IR and X-ray observational campaign we have undertaken for the purpose of determining the nature of the faint discrete X-ray source population discovered by Chandra in the Galactic Center (GC). Data obtained for this project includes a deep Chandra survey of the Galactic Bulge; deep, high resolution IR imaging from VLT/ISAAC, CTIO/ISPI, and the UKIDSS Galactic Plane Survey (GPS); and IR spectroscopy from VLT/ISAAC and IRTF/SpeX. By cross-correlating the GC X-ray imaging from Chandra with our IR surveys, we identify candidate counterparts to the X-ray sources via astrometry. Using a detailed IR extinction map, we are deriving magnitudes and colors for all the candidates. Having thus established a target list, we will use the multi-object IR spectrograph FLAMINGOS-2 on Gemini-South to carry out a spectroscopic survey of the candidate counterparts, to search for emission line signatures which are a hallmark of accreting binaries. By determining the nature of these X-ray sources, this FLAMINGOS-2 Galactic Center Survey will have a dramatic impact on our knowledge of the Galactic accreting binary population.

Radio-loud and radio-quiet quasars: one population, different epochs of observation

ASP Conference Series (2008)

Abstract:

I bring together evidence for the rapidity with which quasars' radio synchrotron lobe emission fades and for the intermittency with which jet plasma is ejected from individual quasars and radio galaxies and affirm the picture presented by Nipoti et al (2005) that the radio-loudness of quasars is a function of the epoch at which they are observed. I briefly illustrate this account with examples of successive episodes of jet activity where the axis along which jet plasma is launched appears to have precessed. A new model for the weak core radio emission from radio-quiet quasars, that is not any kind of jet ejecta, is also briefly described.

Multiwavelength study of Cygnus A I. Precession and slow jet speeds from radio observations

ArXiv 0805.2169 (2008)

Authors:

KC Steenbrugge, KM Blundell

Abstract:

We study the jet and counterjet of the powerful classical double FRII radio galaxy Cygnus A as seen in the 5, 8 and 15-GHz radio bands using the highest spatial resolution and signal-to-noise archival data available. We demonstrate that the trace of the radio knots that delineate the jet and counterjet deviates from a straight line and that the inner parts can be satisfactorily fitted with the precession model of Hjellming & Johnston. The parameter values of the precession model fits are all plausible although the jet speed is rather low (< 0.5 c) but, on investigation, found to be consistent with a number of other independent estimates of the jet speed in Cygnus A. We compare the masses and precession periods for sources with known precession and find that for the small number of AGN with precessing jets the precession periods are significantly longer than those for microquasars.

Multiwavelength study of Cygnus A II. X-ray inverse-Compton emission from a relic counterjet and implications for jet duty-cycles

ArXiv 0805.2172 (2008)

Authors:

KC Steenbrugge, KM Blundell, P Duffy

Abstract:

The duty-cycle of powerful radio galaxies and quasars such as the prototype Cygnus A is poorly understood. X-ray observations of inverse-Compton scattered Cosmic Microwave Background (ICCMB) photons probe lower Lorentz-factor particles than radio observations of synchrotron emission. Comparative studies of the nearer and further lobes, separated by many 10s of kpc and thus 10s of thousands of years in light-travel time, yield additional temporal resolution in studies of the lifecycles. We have co-added all archival Chandra ACIS-I data and present a deep 200 ks image of Cygnus A. This deep image reveals the presence of X-ray emission from a counterjet i.e. a jet receding from Earth and related to a previous episode of jet activity. The non-thermal X-ray emission, we interpret as ICCMB radiation. There is an absence of any discernible X-ray emission associated with a jet flowing towards Earth. We conclude that: (1) The emission from a relic jet, indicates a previous episode of jet activity, that took place earlier than the current jet activity appearing as synchrotron radio emission. (2) The presence of X-ray emission from a relic counterjet of Cygnus A and the absence of X-ray emission associated with any relic approaching jet constrains the timescale between successive episodes of jet activity to ~10^6 years. (3) Transverse expansion of the jet causes expansion losses which shifts the energy distribution to lower energies. (4) Assuming the electrons cooled due to adiabatic expansion, the required magnetic field strength is substantially smaller than the equipartition magnetic field strength. (5) A high minimum Lorentz factor for the distribution of relativistic particles in the current jet, of a few 10^3, is ejected from the central nucleus of this active galaxy. Abridged.

The inverse-Compton X-ray-emitting lobes of the high-redshift giant radio galaxy 6C 0905+39

ArXiv 0803.1545 (2008)

Authors:

MC Erlund, AC Fabian, Katherine M Blundell

Abstract:

We present new XMM-Newton data of the high-redshift (z=1.883), Mpc-sized giant radio galaxy 6C 0905+39. The larger collecting area and longer observation time for our new data means that we can better characterise the extended X-ray emission, in particular its spectrum, which arises from cosmic microwave background photons scattered into the X-ray band by the energetic electrons in the spent synchrotron plasma of the (largely) radio-quiet lobes of 6C 0905+39. We calculate the energy that its jet-ejected plasma has dumped into its surroundings in the last 3 X 10^7 years and discuss the impact that similar, or even more extreme, examples of spent, radio-quiet lobes would have on their surroundings. Interestingly, there is an indication that the emission from the hotspots is softer than the rest of the extended emission and the core, implying it is due to synchrotron emission. We confirm our previous detection of the low-energy turnover in the eastern hotspot of 6C 0905+39.