Multiwavelength study of Cygnus A III. Evidence for relic lobe plasma
(2009)
The precession of SS433's radio ruff on long timescales
ArXiv 0905.1648 (2009)
Abstract:
Roughly perpendicular to SS433's famous precessing jets is an outflowing "ruff" of radio-emitting plasma, revealed by direct imaging on milli-arcsecond scales. Over the last decade, images of the ruff reveal that its orientation changes over time with respect to a fixed sky co-ordinate grid. For example, during two months of daily observations with the VLBA by Mioduszewski et al. (2004), a steady rotation through ~10 degrees is observed whilst the jet angle changes by ~20 degrees. The ruff reorientation is not coupled with the well-known precession of SS433's radio jets, as the ruff orientation varies across a range of 69 degrees whilst the jet angle varies across 40 degrees, and on greatly differing and non-commensurate timescales. It has been proposed that the ruff is fed by SS433's circumbinary disk, discovered by a sequence of optical spectroscopy by Blundell et al. (2008), and so we present the results of 3D numerical simulations of circumbinary orbits. These simulations show precession in the longitude of the ascending node of all inclined circumbinary orbits - an effect which would be manifested as the observed ruff reorientation. Matching the rate of ruff precession is possible if circumbinary components are sufficiently close to the binary system, but only if the binary mass fraction is close to equality and the binary eccentricity is non-zero.Inflow and outflow from the accretion disc of the microquasar SS433: UKIRT spectroscopy
ArXiv 0904.4228 (2009)
Abstract:
A succession of near-IR spectroscopic observations, taken nightly throughout an entire cycle of SS433's orbit, reveal (i) the persistent signature of SS433's accretion disc, having a rotation speed of ~500 km/s, (ii) the presence of the circumbinary disc recently discovered at optical wavelengths by Blundell, Bowler and Schmidtobreick (2008) and (iii) a much faster outflow than has previously been measured for the disc wind. From these, we find a much faster accretion disc wind than has noted before, with a terminal velocity of ~1500 km/s. The increased wind terminal velocity results in a mass-loss rate of ~10e-4 M_sun/yr. These, together with the newly (upwardly) determined masses for the components of the SS433 system, result in an accurate diagnosis of the extent to which SS433 has super-Eddington flows. Our observations imply that the size of the companion star is comparable with the semi-minor axis of the orbit which is given by (1-e^2)^(1/2) 40 R_sun, where e is the eccentricity. Our relatively high spectral resolution at these near-IR wavelengths has enabled us to deconstruct the different components that comprise the Brackett-gamma line in this binary system, and their physical origins. With this line dominated throughout our series of observations by the disc wind, and the accretion disc itself being only a minority (~15 per cent) contribution, we caution against use of the unresolved Brackett-gamma line intensity as an "accretion signature" in X-ray binaries or microquasars in any quantitative way.Inflow and outflow from the accretion disc of the microquasar SS433: UKIRT spectroscopy
(2009)