Images of an equatorial outflow in SS433

Astrophys.J. 562 (2001) L79-L82

Authors:

Katherine Blundell, Amy Mioduszewski, Tom Muxlow, Philipp Podsiadlowski, Michael Rupen

Abstract:

We have imaged the X-ray binary SS433 with unprecedented Fourier-plane coverage at 6cm using simultaneously the VLBA, MERLIN, and the VLA, and also at 20cm with the VLBA. At both wavelengths we have securely detected smooth, low-surface brightness emission having the appearance of a `ruff' or collar attached perpendicularly to the well-studied knotty jets in this system, extending over at least a few hundred AU. We interpret this smooth emission as a wind-like outflow from the binary, and discuss its implications for the present evolutionary stage of this system.

The optically-powerful quasar E1821+643 is associated with a 300-kpc scale FRI radio structure

Astrophys.J. 562 (2001) L5-L8

Authors:

Katherine Blundell, Steve Rawlings

Abstract:

We present a deep image of the optically-powerful quasar E1821+643 at 18cm made with the Very Large Array (VLA). This image reveals radio emission, over 280 kpc in extent, elongated way beyond the quasar's host galaxy. Its radio structure has decreasing surface brightness with increasing distance from the bright core, characteristic of FRI sources (Fanaroff & Riley 1974). Its radio luminosity at 5GHz falls in the classification for `radio-quiet' quasars (it is only 10^23.9 W/Hz/sr; see e.g. Kellermann et al 1994). Its radio luminosity at 151MHz (which is 10^25.3 W/Hz/sr) is at the transition luminosity observed to separate FRIs and FRIIs. Hitherto, no optically-powerful quasar had been found to have a conventional FRI radio structure. For searches at low-frequency this is unsurprising given current sensitivity and plausible radio spectral indices for radio-quiet quasars. We demonstrate the inevitability of the extent of any FRqI radio structures being seriously under-estimated by existing targetted follow-up observations of other optically-selected quasars, which are typically short exposures of z > 0.3 objects, and discuss the implications for the purported radio bimodality in quasars. The nature of the inner arcsec-scale jet in E1821+643, together with its large-scale radio structure, suggest that the jet-axis in this quasar is precessing (cf. Galactic jet sources such as SS433). A possible explanation for this is that its central engine is a binary whose black holes have yet to coalesce. The ubiquity of precession in `radio-quiet' quasars, perhaps as a means of reducing the observable radio luminosity expected in highly-accreting systems, remains to be established.

The optically-powerful quasar E1821+643 is associated with a 300-kpc scale FRI radio structure

(2001)

Authors:

Katherine Blundell, Steve Rawlings

Images of an equatorial outflow in SS433

(2001)

Authors:

Katherine Blundell, Amy Mioduszewski, Tom Muxlow, Philipp Podsiadlowski, Michael Rupen

On the redshift cut-off for steep-spectrum radio sources

ArXiv astro-ph/0106473 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Chris J Willott, Katherine M Blundell, Steve Eales, Mark Lacy

Abstract:

We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the `most luminous' steep-spectrum radio sources. Although intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF which incorporate distributions in radio spectral shape and linear size as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between z~2.5 and z~4.5. We find this model is favoured over a model with similar evolutionary behaviour to that of optically-selected quasars (i.e. a roughly Gaussian distribution in redshift) with a probability ratio of ~25:1 and ~100:1 for spatially-flat cosmologies with Omega_Lambda = 0 and Omega_Lambda = 0.7 respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock (1990) and Jarvis & Rawlings (2000), in line with the expectations of Unified Schemes.