The JWST Emission Line Survey (JELS): an untargeted search for H α emission line galaxies at z > 6 and their physical properties

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:2 (2025) 1348-1376

Authors:

CA Pirie, PN Best, KJ Duncan, DJ McLeod, RK Cochrane, M Clausen, JS Dunlop, SR Flury, JE Geach, CL Hale, E Ibar, R Kondapally, Zefeng Li, J Matthee, RJ McLure, L Ossa-Fuentes, AL Patrick, Ian Smail, D Sobral, HMO Stephenson, JP Stott, AM Swinbank

Abstract:

We present the first results of the JWST Emission Line Survey (JELS). Utilizing the first NIRCam narrow-band imaging at 4.7 m, over 63 arcmin in the PRIMER/COSMOS field, we have identified 609 emission line galaxy candidates. From these, we robustly selected 35 H star-forming galaxies at , with H star-formation rates () of . Combining our unique H sample with the exquisite panchromatic data in the field, we explored their physical properties and star-formation histories, and compared these to a broad-band selected sample at which has offered vital new insights into the nature of high-redshift galaxies. UV-continuum slopes () were considerably redder for our H sample () compared to the broad-band sample (). This was not due to dust attenuation as our H sample was relatively dust-poor (median ); instead, we argue that the reddened slopes could be due to nebular continuum. We compared and the UV-continuum-derived to SED-fitted measurements averaged over canonical time-scales of 10 and 100 Myr ( and ). We found an increase in recent SFR for our sample of H emitters, particularly at lower stellar masses (). We also found that strongly traces SFR averaged over 10 Myr time-scales, whereas the UV-continuum overpredicts SFR on 100 Myr time-scales at low stellar masses. These results point to our H sample undergoing ‘bursty’ star formation. Our F356W sample showed a larger scatter in across all stellar masses, which has highlighted how narrow-band photometric selections of H emitters are key to quantifying the burstiness of star-formation activity.

Massive stars exploding in a He-rich circumstellar medium. XI. Diverse evolution of five Ibn SNe 2020nxt, 2020taz, 2021bbv, 2023utc and 2024aej

(2025)

Authors:

Z-Y Wang, A Pastorello, Y-Z Cai, M Fraser, A Reguitti, W-L Lin, L Tartaglia, D Andrew Howell, S Benetti, E Cappellaro, Z-H Chen, N Elias-Rosa, J Farah, A Fiore, D Hiramatsu, E Kankare, Z-T Li, P Lundqvist, PA Mazzali, C McCully, J Mo, S Moran, M Newsome, E Padilla Gonzalez, C Pellegrino, Z-H Peng, SJ Smartt, S Srivastav, MD Stritzinger, G Terreran, L Tomasella, G Valerin, G-J Wang, X-F Wang, T de Boer, KC Chambers, H Gao, F-Z Guo, CP Guti'errez, T Kangas, E Karamehmetoglu, G-C Li, C-C Lin, TB Lowe, X-R Ma, EA Magnier, P Minguez, S-P Pei, TM Reynolds, RJ Wainscoat, B Wang, S Williams, C-Y Wu, J-J Zhang, X-H Zhang, X-J Zhu

Thermal electrons in the radio afterglow of relativistic tidal disruption event ZTF22aaajecp/AT2022cmc

(2025)

Authors:

Lauren Rhodes, Ben Margalit, Joe S Bright, Hannah Dykaar, Rob Fender, David A Green, Daryl Haggard, Assaf Horesh, Alexander J van der Horst, Andrew Hughes, Kunal Mooley, Itai Sfaradi, David Titterington, David WIlliams-Baldwin

Hi intensity mapping with the MIGHTEE Survey: first results of the Hi power spectrum

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:1 (2025) 476-493

Authors:

Aishrila Mazumder, Laura Wolz, Zhaoting Chen, Sourabh Paul, Mario G Santos, Matt Jarvis, Junaid Townsend, Srikrishna Sekhar, Russ Taylor

Abstract:

We present the first results of the H i intensity mapping power spectrum analysis with the MeerKAT International GigaHertz Tiered Extragalactic Exploration (MIGHTEE) survey. We use data covering 4 square degrees in the COSMOS field using a frequency range of 962.5–1008.42 MHz, equivalent to H i emission in . The data consist of 15 pointings with a total of 94.2 h on-source. We verify the suitability of the MIGHTEE data for H i intensity mapping by testing for residual systematics across frequency, baselines, and pointings. We also vary the window used for H i signal measurements and find no significant improvement using stringent Fourier mode cuts. We compute the H i power spectrum at scales in autocorrelation as well as cross-correlation between observational scans using power spectrum domain averaging for pointings. We report consistent upper limits of 29.8 mK Mpc from the 2 cross-correlation measurements and 25.82 mK Mpc from autocorrelation at 2 Mpc.The low signal-to-noise ratio in this data potentially limits our ability to identify residual systematics, which will be addressed in the future by incorporating more data in the analysis.

MIGHTEE-HI: The direct detection of neutral hydrogen in galaxies at $z>0.25$

(2025)

Authors:

Matt J Jarvis, Madalina N Tudorache, I Heywood, Anastasia A Ponomareva, M Baes, Natasha Maddox, Kristine Spekkens, Andreea Varasteanu, CL Hale, Mario G Santos, RG Varadaraj, Elizabeth AK Adams, Alessandro Bianchetti, Barbara Catinella, Jacinta Delhaize, M Maksymowicz-Maciata, Pavel E Mancera Piña, Hengxing Pan, Amélie Saintonge, Gauri Sharma, O Ivy Wong