The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope
(2018)
Classification of Multiwavelength Transients with Machine Learning
(2018)
A Strong Jet Signature in the Late-time Light Curve of GW170817
Astrophysical Journal Letters American Astronomical Society 868:1 (2018) L11
Abstract:
We present new 0.6-10 GHz observations of the binary neutron star merger GW170817 covering the period up to 300 days post-merger, taken with the Karl G. Jansky Very Large Array, the Australia Telescope Compact Array, the Giant Metrewave Radio Telescope and the MeerKAT telescope. We use these data to precisely characterize the decay phase of the late-time radio light curve. We find that the temporal decay is consistent with a power-law slope of t^-2.2, and that the transition between the power-law rise and decay is relatively sharp. Such a slope cannot be produced by a quasi-isotropic (cocoon-dominated) outflow, but is instead the classic signature of a relativistic jet. This provides strong observational evidence that GW170817 produced a successful jet, and directly demonstrates the link between binary neutron star mergers and short-hard GRBs. Using simple analytical arguments, we derive constraints on the geometry and the jet opening angle of GW170817. These results are consistent with those from our companion Very Long Baseline Interferometry (VLBI) paper, reporting superluminal motion in GW170817.Don’t blink: constraining the circumstellar environment of the interacting type Ia supernova 2015cp
Astrophysical Journal American Astronomical Society 868:21 (2018)
Abstract:
Despite their cosmological utility, the progenitors of Type Ia supernovae (SNe Ia) are still unknown, with many efforts focused on whether accretion from a nondegenerate companion can grow a carbon–oxygen white dwarf to near the Chandrasekhar mass. The association of SNe Ia resembling SN 1991T ("91T-like") with circumstellar interaction may be evidence for this "single-degenerate" channel. However, the observed circumstellar medium (CSM) in these interacting systems is unlike a stellar wind—of particular interest, it is sometimes detached from the stellar surface, residing at ~1016 cm. A Hubble Space Telescope (HST) program to discover detached CSM around 91T-like SNe Ia successfully discovered interaction nearly two years after explosion in SN 2015cp (Graham et al. 2018). In this work, we present radio and X-ray follow-up observations of SN 2015cp and analyze them in the framework of Harris et al. (2016) to limit the properties of a constant-density CSM shell in this system. Assuming the HST detection took place shortly after the shock crossed the CSM, we constrain the total CSM mass in this system to be <0.5 ${M}_{\odot }$. This limit is comparable to the CSM mass of supernova PTF11kx, but does not rule out lower masses predicted for recurrent novae. From lessons learned modeling PTF11kx and SN 2015cp, we suggest a strategy for future observations of these events to increase the sample of known interacting SNe Ia.The Shapes of the Rotation Curves of Star-forming Galaxies Over the Last $\approx$10 Gyr
(2018)