SN 2017ens: The Metamorphosis of a Luminous Broadlined Type Ic Supernova into an SN IIn
The Astrophysical Journal Letters American Astronomical Society 867:2 (2018) l31
The ATLAS All-Sky Stellar Reference Catalog
The Astrophysical Journal American Astronomical Society 867:2 (2018) 105
First results from the LUCID-Timepix spacecraft payload onboard the TechDemoSat-1 satellite in low Earth orbit
Advances in Space Research Elsevier 63:5 (2018) 1523-1540
Abstract:
The Langton Ultimate Cosmic ray Intensity Detector (LUCID) is a payload onboard the satellite TechDemoSat-1, used to study the radiation environment in Low Earth Orbit (635 km). LUCID operated from 2014 to 2017, collecting over 2.1 million frames of radiation data from its five Timepix detectors on board. LUCID is one of the first uses of the Timepix detector technology in open space, with the data providing useful insight into the performance of this technology in new environments. It provides high-sensitivity imaging measurements of the mixed radiation field, with a wide dynamic range in terms of spectral response, particle type and direction. The data has been analysed using computing resources provided by GridPP, with a new machine learning algorithm that uses the Tensorflow framework. This algorithm provides a new approach to processing Medipix data, using a training set of human labelled tracks, providing greater particle classification accuracy than other algorithms. For managing the LUCID data, we have developed an online platform called Timepix Analysis Platform at School (TAPAS). This provides a swift and simple way for users to analyse data that they collect using Timepix detectors from both LUCID and other experiments. We also present some possible future uses of the LUCID data and Medipix detectors in space.A wildly flickering jet in the black hole X-ray binary MAXI J1535–571
Astrophysical Journal American Astronomical Society 867:2 (2018)
Abstract:
We report on the results of optical, near-infrared (NIR), and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535–571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004–58012), the source shows an optical–NIR spectrum that is consistent with an optically thin synchrotron power law from a jet. After MJD 58015, however, the source faded considerably, the drop in flux being much more evident at lower frequencies. Before the fading, we measure a dereddened flux density of gsim100 mJy in the mid-infrared, making MAXI J1535–571 one of the brightest mid-infrared BHBs known so far. A significant softening of the X-ray spectrum is evident contemporaneous with the infrared fade. We interpret it as being due to the suppression of the jet emission, similar to the accretion–ejection coupling seen in other BHBs. However, MAXI J1535–571 did not transition smoothly to the soft state, instead showing X-ray hardness deviations associated with infrared flaring. We also present the first mid-IR variability study of a BHB on minute timescales, with a fractional rms variability of the light curves of ~15%–22%, which is similar to that expected from the internal shock jet model, and much higher than the optical fractional rms (lesssim7%). These results represent an excellent case of multiwavelength jet spectral timing and demonstrate how rich, multiwavelength time-resolved data of X-ray binaries over accretion state transitions can help in refining models of the disk–jet connection and jet launching in these systems.The relation between galaxy density and radio jet power for 1.4 GHz VLA selected AGNs in Stripe 82
Monthly Notices of the Royal Astronomical Society Oxford University Press 482:4 (2018) 5156-5166