Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 466:2 (2017) 1848-1856
How to blow up a massive star
Astronomy & Geophysics Oxford University Press (OUP) 58:2 (2017) 2.32-2.37
No evidence for Population III stars or a Direct Collapse Black Hole in the z = 6.6 Lyman-$α$ emitter 'CR7'
Monthly Notices of the Royal Astronomical Society Oxford University Press 469:1 (2017) 448-458
Abstract:
The z = 6.6 Lyman-$\alpha$ emitter 'CR7' has been claimed to have a Population III-like stellar population, or alternatively, be a candidate Direct Collapse Black Hole (DCBH). In this paper we investigate the evidence for these exotic scenarios using recently available, deeper, optical, near-infrared and mid-infrared imaging. We find strong Spitzer/IRAC detections for the main component of CR7 at 3.6 and 4.5 microns, and show that it has a blue colour ([3.6] - [4.5] $= -1.2\pm 0.3$). This colour cannot be reproduced by current Pop. III or pristine DCBH models. Instead, the results suggest that the [3.6] band is contaminated by the [OIII]4959,5007 emission line with an implied rest-frame equivalent width of EW_0 (H$\beta$ + [OIII]) $\gtrsim 2000$\AA. Furthermore, we find that new near-infrared data from the UltraVISTA survey supports a weaker He II 1640 emission line than previously measured, with EW_0 $= 40 \pm 30$\AA. For the fainter components of CR7 visible in Hubble Space Telescope imaging, we find no evidence that they are particularly red as previously claimed, and show that the derived masses and ages are considerably uncertain. In light of the likely detection of strong [OIII] emission in CR7 we discuss other more standard interpretations of the system that are consistent with the data. We find that a low-mass, narrow-line AGN can reproduce the observed features of CR7, including the lack of radio and X-ray detections. Alternatively, a young, low-metallicity (~1/200 solar) starburst, modelled including binary stellar pathways, can reproduce the inferred strength of the He II line and simultaneously the strength of the observed [OIII] emission, but only if the gas shows super-solar $\alpha$-element abundances (O/Fe ~ 5 O/Fe solar).WISDOM Project – II. Molecular gas measurement of the supermassive black hole mass in NGC 4697
Monthly Notices of the Royal Astronomical Society Oxford University Press 468:4 (2017) 4675-4690
Abstract:
As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC 4697. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-3 observations of the 12CO(2–1) emission line with a linear resolution of 29 pc (0.53 arcsec). We find that NGC 4697 hosts a small relaxed central molecular gas disc with a mass of 1.6 × 107 M⊙, co-spatial with the obscuring dust disc visible in optical Hubble Space Telescope imaging. We also resolve thermal 1 mm continuum emission from the dust in this disc. NGC 4697 is found to have a very low molecular gas velocity dispersion, σgas = 1.65+0.68−0.65 km s^−1. This seems to be partially because the giant molecular cloud mass function is not fully sampled, but other mechanisms such as chemical differentiation in a hard radiation field or morphological quenching also seem to be required. We detect a Keplerian increase of the rotation of the molecular gas in the very centre of NGC 4697, and use forward modelling of the ALMA data cube in a Bayesian framework with the KINematic Molecular Simulation (KINMS) code to estimate an SMBH mass of (1.3+0.18−0.17) × 108 M⊙ and an i-band mass-to-light ratio of 2.14+0.04−0.05M⊙/L⊙ (at the 99 per cent confidence level). Our estimate of the SMBH mass is entirely consistent with previous measurements from stellar kinematics. This increases confidence in the growing number of SMBH mass estimates being obtained in the ALMA era.OGLE-2014-SN-131: A long-rising Type Ibn supernova from a massive progenitor
(2017)