Extreme jet ejections from the black hole X-ray binary V404 Cygni

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3141-3162

Authors:

AJ Tetarenko, GR Sivakoff, JCA Miller-Jones, EW Rosolowsky, G Petitpas, M Gurwell, J Wouterloot, Robert Fender, S Heinz, D Maitra, SB Markoff, S Migliari, MP Rupen, Anthony P Rushton, DM Russell, TD Russell, CL Sarazin

Abstract:

We present simultaneous radio through sub-mm observations of the black hole X-ray binary (BHXB) V404 Cygni during the most active phase of its June 2015 outburst. Our 4 h long set of overlapping observations with the Very Large Array, the Sub-millimeter Array and the James Clerk Maxwell Telescope (SCUBA-2) covers eight different frequency bands (including the first detection of aBHXBjet at 666 GHz/450 μm), providing an unprecedented multifrequency view of the extraordinary flaring activity seen during this period of the outburst. In particular, we detect multiple rapidly evolving flares, which reach Jy-level fluxes across all of our frequency bands. With this rich data set, we performed detailed MCMC modelling of the repeated flaring events. Our custom model adapts the van der Laan synchrotron bubble model to include twin bi-polar ejections, propagating away from the black hole at bulk relativistic velocities, along a jet axis that is inclined to the line of sight. The emission predicted by our model accounts for projection effects, relativistic beaming and the geometric time delay between the approaching and receding ejecta in each ejection event. We find that a total of eight bi-polar, discrete jet ejection events can reproduce the emission that we observe in all of our frequency bands remarkably well.With our best-fitting model, we provide detailed probes of jet speed, structure, energetics and geometry. Our analysis demonstrates the paramount importance of the mm/sub-mm bands, which offer a unique, more detailed view of the jet than can be provided by radio frequencies alone.

Galaxy Zoo: Finding offset discs and bars in SDSS galaxies

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3363-3373

Authors:

Sandor I Kruk, Christopher J Lintott, Brooke D Simmons, SP Bamford, CN Cardamone, L Fortson, RE Hart, B Häußler, KL Masters, RC Nichol, K Schawinski, Rebecca J Smethurst

Abstract:

We use multi-wavelength SDSS images and Galaxy Zoo morphologies to identify a sample of $\sim$$270$ late-type galaxies with an off-centre bar. We measure offsets in the range 0.2-2.5 kpc between the photometric centres of the stellar disc and stellar bar. The measured offsets correlate with global asymmetries of the galaxies, with those with largest offsets showing higher lopsidedness. These findings are in good agreement with predictions from simulations of dwarf-dwarf tidal interactions producing off-centre bars. We find that the majority of galaxies with off-centre bars are of Magellanic type, with a median mass of $10^{9.6} M_{\odot}$, and 91% of them having $M_{\star}<3\times10^{10} M_{\odot}$, the characteristic mass at which galaxies start having higher central concentrations attributed to the presence of bulges. We conduct a search for companions to test the hypothesis of tidal interactions, but find that a similar fraction of galaxies with offset bars have companions within 100 kpc as galaxies with centred bars. Although this may be due to the incompleteness of the SDSS spectroscopic survey at the faint end, alternative scenarios that give rise to offset bars such as interactions with dark companions or the effect of lopsided halo potentials should be considered. Future observations are needed to confirm possible low mass companion candidates and to determine the shape of the dark matter halo, in order to find the explanation for the off-centre bars in these galaxies.

The LOFAR window on star-forming galaxies and AGNs – curved radio SEDs and IR–radio correlation at 0

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3468-3488

Authors:

G Calistro Rivera, WL Williams, MJ Hardcastle, K Duncan, HJA Röttgering, PN Best, M Brüggen, KT Chyży, CJ Conselice, F de Gasperin, D Engels, G Gürkan, HT Intema, Matthew Jarvis, EK Mahony, GK Miley, Leah K Morabito, I Prandoni, J Sabater, DJB Smith, C Tasse, PP van der Werf, GJ White

Abstract:

We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ∼ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared–radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)−0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)−0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.

Growing evidence that SNe Iax are not a one-parameter family

Astronomy & Astrophysics EDP Sciences 601 (2017) a62

Authors:

MR Magee, R Kotak, SA Sim, D Wright, SJ Smartt, E Berger, R Chornock, RJ Foley, DA Howell, N Kaiser, EA Magnier, R Wainscoat, C Waters

MIGHTEE: The MeerKAT International GHz Tiered Extragalactic Exploration

IOP Conference Series Materials Science and Engineering IOP Publishing 198:1 (2017) 012014

Authors:

A Russ Taylor, Matt Jarvis