High-energy gamma-ray observations of the accreting black hole V404 Cygni during its 2015 June outburst
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 462:1 (2016) l111-l115
GAMA/WiggleZ: The 1.4GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z=0.75
Monthly Notices of the Royal Astronomical Society Oxford University Press 460:1 (2016) 2-17
Abstract:
We present radio active galactic nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey images. The radio AGN are separated into low-excitation radio galaxies (LERGs) and high-excitation radio galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z < 0.75). The radio luminosity functions can be well described by a double power law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ∼(1+z)0.06+0.17−0.18 assuming pure density evolution or ∼(1+z)0.46+0.22−0.24 assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ∼(1+z)2.93+0.46−0.47 assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed, the best-fitting HERG evolution is parametrized by ∼(1+z)7.41+0.79−1.33 . The characteristic break in the radio luminosity function occurs at a significantly higher power (≳1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.High-energy gamma-ray observations of the accreting black hole V404 Cygni during its June 2015 outburst
(2016)
LOFAR/H-ATLAS: a deep low-frequency survey of the Herschel-ATLAS North Galactic Pole field
Monthly Notices of the Royal Astronomical Society Oxford University Press 462:2 (2016) 1910-1936
Abstract:
We present Low-Frequency Array (LOFAR) High-Band Array observations of the Herschel-ATLAS North Galactic Pole survey area. The survey we have carried out, consisting of four pointings covering around 142 deg2 of sky in the frequency range 126–173 MHz, does not provide uniform noise coverage but otherwise is representative of the quality of data to be expected in the planned LOFAR wide-area surveys, and has been reduced using recently developed ‘facet calibration’ methods at a resolution approaching the full resolution of the data sets (∼10 × 6 arcsec) and an rms off-source noise that ranges from 100 μJy beam−1 in the centre of the best fields to around 2 mJy beam−1 at the furthest extent of our imaging. We describe the imaging, cataloguing and source identification processes, and present some initial science results based on a 5σ source catalogue. These include (i) an initial look at the radio/far-infrared correlation at 150 MHz, showing that many Herschel sources are not yet detected by LOFAR; (ii) number counts at 150 MHz, including, for the first time, observational constraints on the numbers of star-forming galaxies; (iii) the 150-MHz luminosity functions for active and star-forming galaxies, which agree well with determinations at higher frequencies at low redshift, and show strong redshift evolution of the star-forming population; and (iv) some discussion of the implications of our observations for studies of radio galaxy life cycles.Localization and broadband follow-up of the gravitational-wave transient GW150914
Astrophysical Journal Letters American Astronomical Society 826:1 (2016) L13-L13