Galaxy Zoo: the interplay of quenching mechanisms in the group environment

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:3 (2017) 3670-3687

Authors:

Rebecca J Smethurst, Christopher Lintott, SP Bamford, RE Hart, Sandor J Kruk, KL Masters, RC Nichol, BD Simmons

Abstract:

Does the environment of a galaxy directly influence the quenching history of a galaxy? Here we investigate the detailed morphological structures and star formation histories of a sample of SDSS group galaxies with both classifications from Galaxy Zoo 2 and NUV detections in GALEX. We use the optical and NUV colours to infer the quenching time and rate describing a simple exponentially declining SFH for each galaxy, along with a control sample of field galaxies. We find that the time since quenching and the rate of quenching do not correlate with the relative velocity of a satellite but are correlated with the group potential. This quenching occurs within an average quenching timescale of ∼2.5 Gyr from star forming to complete quiescence, during an average infall time (from ∼10R200 to 0.01R200) of ∼2.6 Gyr. Our results suggest that the environment does play a direct role in galaxy quenching through quenching mechanisms which are correlated with the group potential, such as harassment, interactions or starvation. Environmental quenching mechanisms which are correlated with satellite velocity, such as ram pressure stripping, are not the main cause of quenching in the group environment. We find that no single mechanism dominates over another, except in the most extreme environments or masses. Instead an interplay of mergers, mass & morphological quenching and environment driven quenching mechanisms dependent on the group potential drive galaxy evolution in groups.

Investigating the Unification of LOFAR-detected powerful AGN in the Boötes Field

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:2 (2017) 1883-1896

Authors:

Leah K Morabito, WL Williams, KJ Duncan, HJA Röttgering, G Miley, A Saxena, P Barthel, PN Best, M Bruggen, G Brunetti, KT Chyży, D Engels, MJ Hardcastle, JJ Harwood, Matt J Jarvis, EK Mahony, I Prandoni, TW Shimwell, A Shulevski, C Tasse

Abstract:

Low radio frequency surveys are important for testing unified models of radio-loud quasars and radio galaxies. Intrinsically similar sources that are randomly oriented on the sky will have different projected linear sizes. Measuring the projected linear sizes of these sources provides an indication of their orientation. Steep-spectrum isotropic radio emission allows for orientation-free sample selection at low radio frequencies. We use a new radio survey of the Boötes field at 150 MHz made with the Low-Frequency Array (LOFAR) to select a sample of radio sources. We identify 60 radio sources with powers P > 1025.5  W Hz−1, at 150 MHz using cross-matched multiwavelength information from the AGN and Galaxy Evolution Survey, which provides spectroscopic redshifts and photometric identification of 16 quasars and 44 radio galaxies. When considering the radio spectral slope only, we find that radio sources with steep spectra have projected linear sizes that are on average 4.4 ± 1.4 larger than those with flat spectra. The projected linear sizes of radio galaxies are on average 3.1 ± 1.0 larger than those of quasars (2.0 ± 0.3 after correcting for redshift evolution). Combining these results with three previous surveys, we find that the projected linear sizes of radio galaxies and quasars depend on redshift but not on power. The projected linear size ratio does not correlate with either parameter. The LOFAR data are consistent within the uncertainties with theoretical predictions of the correlation between the quasar fraction and linear size ratio, based on an orientation-based unification scheme.

Optical photometry and spectroscopy of the low-luminosity, broad-lined Ic supernova iPTF15dld

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 466:2 (2017) 1848-1856

Authors:

E Pian, L Tomasella, E Cappellaro, S Benetti, PA Mazzali, C Baltay, M Branchesi, E Brocato, S Campana, C Copperwheat, S Covino, P D'Avanzo, N Ellman, A Grado, A Melandri, E Palazzi, A Piascik, S Piranomonte, D Rabinowitz, G Raimondo, SJ Smartt, IA Steele, M Stritzinger, S Yang, S Ascenzi, M Della Valle, A Gal-Yam, F Getman, G Greco, C Inserra, E Kankare, L Limatola, L Nicastro, A Pastorello, L Pulone, A Stamerra, L Stella, G Stratta, L Tartaglia, M Turatto

How to blow up a massive star

Astronomy & Geophysics Oxford University Press (OUP) 58:2 (2017) 2.32-2.37

Authors:

Bernhard Müller, Stephen J Smartt

No evidence for Population III stars or a Direct Collapse Black Hole in the z = 6.6 Lyman-$α$ emitter 'CR7'

Monthly Notices of the Royal Astronomical Society Oxford University Press 469:1 (2017) 448-458

Authors:

Rebecca AA Bowler, Ross J McLure, James S Dunlop, Derek J McLeod, Elizabeth R Stanway, John J Eldridge, Matthew J Jarvis

Abstract:

The z = 6.6 Lyman-$\alpha$ emitter 'CR7' has been claimed to have a Population III-like stellar population, or alternatively, be a candidate Direct Collapse Black Hole (DCBH). In this paper we investigate the evidence for these exotic scenarios using recently available, deeper, optical, near-infrared and mid-infrared imaging. We find strong Spitzer/IRAC detections for the main component of CR7 at 3.6 and 4.5 microns, and show that it has a blue colour ([3.6] - [4.5] $= -1.2\pm 0.3$). This colour cannot be reproduced by current Pop. III or pristine DCBH models. Instead, the results suggest that the [3.6] band is contaminated by the [OIII]4959,5007 emission line with an implied rest-frame equivalent width of EW_0 (H$\beta$ + [OIII]) $\gtrsim 2000$\AA. Furthermore, we find that new near-infrared data from the UltraVISTA survey supports a weaker He II 1640 emission line than previously measured, with EW_0 $= 40 \pm 30$\AA. For the fainter components of CR7 visible in Hubble Space Telescope imaging, we find no evidence that they are particularly red as previously claimed, and show that the derived masses and ages are considerably uncertain. In light of the likely detection of strong [OIII] emission in CR7 we discuss other more standard interpretations of the system that are consistent with the data. We find that a low-mass, narrow-line AGN can reproduce the observed features of CR7, including the lack of radio and X-ray detections. Alternatively, a young, low-metallicity (~1/200 solar) starburst, modelled including binary stellar pathways, can reproduce the inferred strength of the He II line and simultaneously the strength of the observed [OIII] emission, but only if the gas shows super-solar $\alpha$-element abundances (O/Fe ~ 5 O/Fe solar).