SDSS-IV MaNGA: The Different Quenching Histories of Fast and Slow Rotators

MNRAS, 473, 2679

Authors:

Rebecca Smethurst, Karen Masters, Chris Lintott, Anne-Marie Weijmans, Michael Merrifield, Samantha Penny, Alfonso Aragon Salamanca, Joel Brownstein, Kevin Bundy, Niv Drory, David Law, Robert Nichol

Abstract:

The AGN fuelling/feedback cycle in nearby radio galaxies II. Kinematics of the molecular gas

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP)

Authors:

Ilaria Ruffa, Timothy A Davis, Isabella Prandoni, Robert A Laing, Rosita Paladino, Paola Parma, Hans de Ruiter, Viviana Casasola, Martin Bureau, Joshua Warren

Abstract:

This is the second paper of a series exploring the multi-component (stars, warm and cold gas and radio jets) properties of a sample of eleven nearby low excitation radio galaxies (LERGs), with the aim of better understanding the AGN fuelling/feedback cycle in these objects. Here we present a study of the molecular gas kinematics of six sample galaxies detected in $^{12}$CO(2-1) with ALMA. In all cases, our modelling suggests that the bulk of the gas in the observed (sub-)kpc CO discs is in ordered rotation. Nevertheless, low-level distortions are ubiquitous, indicating that the molecular gas is not fully relaxed into the host galaxy potential. The majority of the discs, however, are only marginally resolved, preventing us from drawing strong conclusions. NGC 3557 and NGC 3100 are special cases. The features observed in the CO velocity curve of NGC 3557 allow us to estimate a super-massive black hole (SMBH) mass of $(7.10\pm0.02)\times10^{8}$ M$_{\odot}$, in agreement with expectations from the M$_{\rm SMBH}- \sigma_{*}$ relation. The rotation pattern of NGC 3100 shows distortions that appear to be consistent with the presence of both a position angle and inclination warp. Non-negligible radial motions are also found in the plane of the CO disc, likely consistent with streaming motions associated with the spiral pattern found in the inner regions of the disc. The dominant radial motions are likely to be inflows, supporting a scenario in which the cold gas is contributing to the fuelling of the AGN.

The ASKAP Variables and Slow Transients (VAST) Pilot Survey

Authors:

Tara Murphy, David L Kaplan, Adam J Stewart, Andrew O'Brien, Emil Lenc, Sergio Pintaldi, Joshua Pritchard, Dougal Dobie, Archibald Fox, James K Leung, Tao An, Martin E Bell, Jess W Broderick, Shami Chatterjee, Shi Dai, Daniele d'Antonio, J Gerry Doyle, Bm Gaensler, George Heald, Assaf Horesh, Megan L Jones, David McConnell, Vanessa A Moss, Wasim Raja, Gavin Ramsay

Abstract:

The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $\sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim 162$ hours of observations conducted at a central frequency of 888~MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24~mJy~beam$^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, \red{each of which was observed for 12 minutes integration time}, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5\,131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1\,646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039--5617. Another seven are stars, four of which have no previously reported radio detection (SCR~J0533--4257, LEHPM~2-783, UCAC3~89--412162 and 2MASS J22414436--6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multiwavelength counterparts and are yet to be identified.

The Birth of a Relativistic Jet Following the Disruption of a Star by a Cosmological Black Hole

Authors:

Dheeraj Pasham, Matteo Lucchini, Tanmoy Laskar, Benjamin Gompertz, Shubham Srivas, Matt Nicholl, Stephen Smartt, James Miller-Jones, Kate Alexander, Rob Fender, Graham Smith, Michael Fulton, Gulab Dewangan, Keith Gendreau, Lauren Rhodes, Assaf Horesh, Sjoert van Velzen, Itai Sfaradi, Muryel Guolo, N Castro Segura, Aysha Aamer, Joseph Anderson, Iair Arcavi, Seán Brennan, Kenneth Chambers, Panos Charalampopoulos, Ting-Wan Chen, Alejandro Clocchiatti, Thomas de Boer, Michel Dennefeld, Elizabeth Ferrara, Lluís Galbany, Hua Gao, James Gillanders, Adelle Goodwin, Mariusz Gromadzki, M Huber, Peter Jonker, Manasvita Joshi, Erin Kara, Thomas Killestein, Peter Kosec, Daniel Kocevski, Giorgos Leloudas, Chien-Cheng Lin, Raffaella Margutti, Seppo Mattila, Thomas Moore, Tom ’as M\”uller-Bravo, Chow-Choong Ngeow, Samantha Oates, Francesca Onori, Yen-Chen Pan, Miguel Perez Torres, Priyanka Rani, Ronald Remillard, E Ridley, Steve Schulze, Xinyue Sheng, Luke Shingles, Ken Smith, James Steiner, Richard Wainscoat, Thomas Wevers, Sheng Yang

The KMOS Redshift One Spectroscopic Survey (KROSS): the origin of disk turbulence in z~0.9 star-forming galaxies

arXiv

Authors:

HL Johnson, CM Harrison, AM Swinbank, AL Tiley, JP Stott, RG Bower, I Smail, AJ Bunker, D Sobral, OJ Turner, P Best, Martin Bureau, M Cirasuolo, Matthew Jarvis, G Magdis, RM Sharples, J Bland-Hawthorn, B Catinella, L Cortese, SM Croom, C Federrath, K Glazebrook, SM Sweet, JJ Bryant, IS Konstantopoulos

Abstract:

We analyse the velocity dispersion properties of 472 z~0.9 star-forming galaxies observed as part of the KMOS Redshift One Spectroscopic Survey (KROSS). The majority of this sample is rotationally dominated (83 +/- 5% with v_C/sigma_0 > 1) but also dynamically hot and highly turbulent. After correcting for beam smearing effects, the median intrinsic velocity dispersion for the final sample is sigma_0 = 43.2 +/- 0.8 km/s with a rotational velocity to dispersion ratio of v_C/sigma_0 = 2.6 +/- 0.1. To explore the relationship between velocity dispersion, stellar mass, star formation rate and redshift we combine KROSS with data from the SAMI survey (z~0.05) and an intermediate redshift MUSE sample (z~0.5). While there is, at most, a weak trend between velocity dispersion and stellar mass, at fixed mass there is a strong increase with redshift. At all redshifts, galaxies appear to follow the same weak trend of increasing velocity dispersion with star formation rate. Our results are consistent with an evolution of galaxy dynamics driven by disks that are more gas rich, and increasingly gravitationally unstable, as a function of increasing redshift. Finally, we test two analytic models that predict turbulence is driven by either gravitational instabilities or stellar feedback. Both provide an adequate description of the data, and further observations are required to rule out either model.