Formation of slowly rotating elliptical galaxies in major mergers. A resolution study
AIP Conference Proceedings 1240 (2010) 405-406
Abstract:
We study resolution effects in numerical simulations of gas-rich (20% of the total baryonic mass) major mergers, and show that the formation of slowly-rotating elliptical galaxies requires a resolution that is beyond the present-day standards to be properly modelled. Our findings show that a high-enough resolution is required to accurately model the global properties of merger remnants and the evolution of their angular momentum. The role of wet mergers of spiral galaxies in the formation of slow-rotating ellipticals may therefore have been underestimated. © 2010 American Institute of Physics.H-ATLAS: PACS imaging for the Science Demonstration Phase
Monthly Notices of the Royal Astronomical Society 409:1 (2010) 38-47
Abstract:
We describe the reduction of data taken with the PACS instrument on board the Herschel Space Observatory in the Science Demonstration Phase of the Herschel-ATLAS (H-ATLAS) survey, specifically data obtained for a 4 × 4 deg2 region using Herschel's fast-scan (60 arcsec s-1) parallel mode. We describe in detail a pipeline for data reduction using customized procedures within hipe from data retrieval to the production of science-quality images. We found that the standard procedure for removing cosmic ray glitches also removed parts of bright sources and so implemented an effective two-stage process to minimize these problems. The pronounced 1/f noise is removed from the timelines using 3.4- and 2.5-arcmin boxcar high-pass filters at 100 and 160 μm. Empirical measurements of the point spread function (PSF) are used to determine the encircled energy fraction as a function of aperture size. For the 100- and 160-μm bands, the effective PSFs are ~9 and ~13 arcsec (FWHM), and the 90-per cent encircled energy radii are 13 and 18 arcsec. Astrometric accuracy is good to ≤2 arcsec. The noise in the final maps is correlated between neighbouring pixels and rather higher than advertised prior to launch. For a pair of cross-scans, the 5σ point-source sensitivities are 125-165 mJy for 9-13 arcsec radius apertures at 100 μm and 150-240 mJy for 13-18 arcsec radius apertures at 160 μm. © 2010 The Authors. Journal compilation © 2010 RAS.Herschel-ATLAS: Far-infrared properties of radio-selected galaxies
Monthly Notices of the Royal Astronomical Society 409:1 (2010) 122-131
Abstract:
We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.IShocks: X-ray binary jets with an internal shocks model
Monthly Notices of the Royal Astronomical Society 401:1 (2010) 394-404
Abstract:
In the following paper, we present an internal shocks model, iShocks, for simulating a variety of relativistic jet scenarios; these scenarios can range from a single ejection event to an almost continuous jet, and are highly user configurable. Although the primary focus in the following paper is black hole X-ray binary jets, the model is scale and source independent and could be used for supermassive black holes in active galactic nuclei or other flows such as jets from neutron stars. Discrete packets of plasma (or 'shells') are used to simulate the jet volume. A two-shell collision gives rise to an internal shock, which acts as an electron re-energization mechanism. Using a pseudo-random distribution of the shell properties, the results show how for the first time it is possible to reproduce a flat/inverted spectrum (associated with compact radio jets) in a conical jet whilst taking the adiabatic energy losses into account. Previous models have shown that electron re-acceleration is essential in order to obtain a flat spectrum from an adiabatic conical jet: multiple internal shocks prove to be efficient in providing this re-energization. We also show how the high-frequency turnover/break in the spectrum is correlated with the jet power, νb ∝ L∼0.6W, and the flat-spectrum synchrotron flux is correlated with the total jet power, F ν ∝ L∼1.4W. Both the correlations are in agreement with previous analytical predictions. © 2009 RAS.Infrared-correlated 31-GHz radio emission from Orion East
Monthly Notices of the Royal Astronomical Society 407:4 (2010) 2223-2229