A tool to separate optical/infrared disc and jet emission in X-ray transient outbursts: The colour-magnitude diagrams of XTE J1550-564
Monthly Notices of the Royal Astronomical Society 416:3 (2011) 2311-2317
Abstract:
It is now established that thermal disc emission and non-thermal jet emission can both play a role at optical/infrared (OIR) wavelengths in X-ray transients. The spectra of the jet and disc components differ, as do their dependence on mass accretion properties. Here we demonstrate that the OIR colour-magnitude diagrams (CMDs) of the evolution of the X-ray transient XTE J1550-564 in outburst can be used to separate the disc from the jet. Monitoring in two wavebands is all that is required. This outburst in 2000 was well studied, and both disc and jet were known to contribute. During the outburst the data follow a well-defined path in the CMD, describing what would be expected from a heated single-temperature blackbody of approximately constant area, except when the data appear redder than this track. This is due to the non-thermal jet component which dominates the OIR moreso during hard X-ray states at high luminosities, and which is quenched in the soft state. The CMD therefore shows state-dependent hysteresis, in analogy with (but not identical to) the well-established X-ray hardness-intensity diagram of black hole transients. The blackbody originates in the X-ray illuminated, likely unwarped, outer accretion disc. We show that the CMD can be approximately reproduced by a model that assumes various correlations between X-ray, OIR disc and OIR jet fluxes. We find evidence for the OIR jet emission to be decoupled from the disc near the peak of the hard state. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.An automated archival Very Large Array transients survey
Monthly Notices of the Royal Astronomical Society 415:1 (2011) 2-10
Abstract:
In this paper we present the results of a survey for radio transients using data obtained from the Very Large Array archive. We have reduced, using a pipeline procedure, 5037 observations of the most common pointings - i.e. the calibrator fields. These fields typically contain a relatively bright point source and are used to calibrate 'target' observations: they are therefore rarely imaged themselves. The observations used span a time range ~1984-2008 and consist of eight different pointings, three different frequencies (8.4, 4.8 and 1.4 GHz) and have a total observing time of 435 h. We have searched for transient and variable radio sources within these observations using components from the prototype LOFAR transient detection system. In this paper we present the methodology for reducing large volumes of Very Large Array data; and we also present a brief overview of the prototype LOFAR transient detection algorithms. No radio transients were detected in this survey, therefore we place an upper limit on the snapshot rate of GHz frequency transients >8.0 mJy toρ≤0.032 deg-2 that have typical time-scales 4.3 to 45.3 d. We compare and contrast our upper limit with the snapshot rates - derived from either detections or non-detections of transient and variable radio sources - reported in the literature. When compared with the current LogN-LogSdistribution formed from previous surveys, we show that our upper limit is consistent with the observed population. Current and future radio transient surveys will hopefully further constrain these statistics, and potentially discover dominant transient source populations. In this paper we also briefly explore the current transient commissioning observations with LOFAR, and the impact they will make on the field. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.Axisymmetric mass models of S0 and spiral galaxies with boxy bulges: Mass-to-light ratios, dark matter and bars
Memorie della Societa Astronomica Italiana - Journal of the Italian Astronomical Society 18 (2011) 79-82
Abstract:
We examine a sample of 30 edge-on spiral and S0 galaxies that have boxy and peanut-shaped bulges.We compute model stellar kinematics by solving the Jeans equations for axisymmetric mass distributions derived from K-band images. These simple models have only one free parameter: the dynamical mass-to-light ratio, which we assume is independent of radius. Given the simplicity of the modelling procedure, the model second velocity moments are strikingly good fits to the observed stellar kinematics within the extent of our kinematic data, which typically reach ∼ 0.5-1 RDust-correlated cm wavelength continuum emission from translucent clouds ζ Oph and LDN 1780
Monthly Notices of the Royal Astronomical Society 414:3 (2011) 2424-2435
Abstract:
The diffuse cm wave IR-correlated signal, the 'anomalous' CMB foreground, is thought to arise in the dust in cirrus clouds. We present Cosmic Background Imager (CBI) cm wave data of two translucent clouds, ζ Oph and LDN 1780 with the aim of characterizing the anomalous emission in the translucent cloud environment. In ζ Oph, the measured brightness at 31GHz is 2.4σ higher than an extrapolation from 5-GHz measurements assuming a free-free spectrum on 8 arcmin scales. The SED of this cloud on angular scales of 1° is dominated by free-free emission in the cm range. In LDN 1780 we detected a 3σ excess in the SED on angular scales of 1° that can be fitted using a spinning dust model. In this cloud, there is a spatial correlation between the CBI data and IR images, which trace dust. The correlation is better with near-IR templates (IRAS 12 and 25μm) than with IRAS 100μm, which suggests a very small grain origin for the emission at 31GHz. We calculated the 31-GHz emissivities in both clouds. They are similar and have intermediate values between that of cirrus clouds and dark clouds. Nevertheless, we found an indication of an inverse relationship between emissivity and column density, which further supports the VSGs origin for the cm emission since the proportion of big relative to small grains is smaller in diffuse clouds. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.Evidence for a maximum jet efficiency for the most powerful radio galaxies
Monthly Notices of the Royal Astronomical Society 411:3 (2011) 1909-1916