Inwardly rectifying potassium channels (K<sub>IR</sub>) in GtoPdb v.2025.3

IUPHAR/BPS Guide to Pharmacology CITE University of Edinburgh 2025:3 (2025)

Authors:

John P Adelman, Stephen Tucker, Paul A Slesinger, Susumu Seino, Henry Sackin, Wade L Pearson, Lawrence G Palmer, Colin G Nichols, Takashi Miki, Michel Lazdunski, Yoshihisa Kurachi, Yoshihiro Kubo, Andreas Karschin, Lily Y Jan, Atsushi Inanobe, Hiroshi Hibino, David E Clapham, Carol A Vandenberg

Abstract:

The 2TM domain family of K channels are also known as the inward-rectifier K channel family. This family includes the strong inward-rectifier K channels (Kir2.x) that are constitutively active, the G-protein-activated inward-rectifier K channels (Kir3.x) and the ATP-sensitive K channels (Kir6.x, which combine with sulphonylurea receptors (SUR1-3)). The pore-forming α subunits form tetramers, and heteromeric channels may be formed within subfamilies (e.g. Kir3.2 with Kir3.3).

Cryo-EM structure of the human THIK-1 K2P K + channel reveals a lower Y gate regulated by lipids and anesthetics

Nature Structural & Molecular Biology Nature Research 32:7 (2025) 1167-1174

Authors:

Karin EJ Rödström, Bisher Eymsh, Peter Proks, Mehtab S Hayre, Sönke Cordeiro, Edward Mendez-Otalvaro, Christian Madry, Anna Rowland, Wojciech Kopec, Simon Newstead, Thomas Baukrowitz, Marcus Schewe, Stephen J Tucker

Abstract:

THIK-1 (KCNK13) is a halothane-inhibited and anionic-lipid-activated two-pore domain (K2P) K+ channel implicated in microglial activation and neuroinflammation, and a current target for the treatment of neurodegenerative disorders, for example Alzheimer’s disease and amyothropic lateral sclerosis (ALS). However, compared to other K2P channels, little is known about the structural and functional properties of THIK-1. Here we present a 3.16-Å-resolution cryo-EM structure of human THIK-1 that reveals several distinct features, in particular, a tyrosine in M4 that contributes to a lower ‘Y gate’ that opens upon activation by physiologically relevant G-protein-coupled receptor and lipid signaling pathways. We demonstrate that linoleic acid bound within a modulatory pocket adjacent to the filter influences channel activity, and that halothane inhibition involves a binding site within the inner cavity, both resulting in conformational changes to the Y gate. Finally, the extracellular cap domain contains positively charged residues that line the ion exit pathway and contribute to the distinct biophysical properties of this channel. Overall, our results provide structural insights into THIK-1 function and identify distinct regulatory sites that expand its potential as a drug target for the modulation of microglial function.

Electronic polarizability tunes the function of the human bestrophin 1 Cl– channel

Journal of Chemical Theory and Computation American Chemical Society 21:2 (2025) 933-942

Authors:

Linda X Phan, Aaron P Owji, Tingting Yang, Jason Crain, Mark SP Sansom, Stephen J Tucker

Abstract:

Mechanisms of anion permeation within ion channels and nanopores remain poorly understood. Recent cryo-electron microscopy structures of the human bestrophin 1 Cl channel (hBest1) provide an opportunity to evaluate ion interactions predicted by molecular dynamics (MD) simulations against experimental observations. Here, we implement the fully polarizable force field AMOEBA in MD simulations on different conformations of hBest1. This force field models multipole moments up to the quadrupole. Using this approach, we model key biophysical properties of the channel that can only be simulated when electronic polarization is included in the molecular models and show that Cl permeation through the neck of the pore is achieved through hydrophobic solvation concomitant with partial ion dehydration. Furthermore, we demonstrate how such polarizable simulations can help determine the identity of ion-like densities within high-resolution cryo-EM structures and demonstrate that neglecting polarization places Cl at positions that do not correspond to their experimentally resolved location. Overall, our results demonstrate the importance of including electronic polarization in realistic and physically accurate models of biological systems, especially channels and pores that selectively permeate anions.

Cryo-EM structure of the human THIK-1 K2P K+ channel reveals and lower "Y-gate" regulated by lipids and anesthetics

BIOPHYSICAL JOURNAL 124:3 (2025)

Structures of TASK-1 and TASK-3 K2P channels provide insight into their gating and dysfunction in disease

Structure Cell Press 33:1 (2024) 115-122.e4

Authors:

Peter Rory Hall, Thibault Jouen-Tachoire, Marcus Schewe, Peter Proks, Thomas Baukrowitz, Elisabeth P Carpenter, Simon Newstead, Karin EJ Rödström, Stephen J Tucker

Abstract:

TASK-1 and TASK-3 are pH-sensitive two-pore domain (K2P/KCNK) K+ channels. Their functional roles make them promising targets for treatment of multiple disorders including sleep apnea, pain, and atrial fibrillation. Mutations in these channels are also associated with neurodevelopmental and hypertensive disorders. A previous crystal structure of TASK-1 revealed a lower “X-gate” as a hotspot for missense gain-of-function (GoF) mutations associated with DDSA (developmental delay with sleep apnea). However, the mechanisms of gating in TASK channels are still not fully understood. Here, we resolve structures for both human TASK-1 and TASK-3 by cryoelectron microscopy (cryo-EM), as well as a recurrent TASK-3 variant (G236R) associated with KCNK9 imprinting syndrome (KIS) (formerly known as Birk-Barel syndrome). Combined with functional studies of the X-gating mechanism, we provide evidence for how a highly conserved gating mechanism becomes defective in disease, and also provide further insight into the pathway of conformational changes that underlie the pH-dependent inhibition of TASK channel activity.