Water Nanoconfined in a Hydrophobic Pore: Molecular Dynamics Simulations of Transmembrane Protein 175 and the Influence of Water Models.

ACS Nano American Chemical Society (2021)

Authors:

Charlotte I Lynch, Gianni Klesse, Shanlin Rao, Stephen J Tucker, Mark SP Sansom

Abstract:

Water molecules within biological ion channels are in a nanoconfined environment and therefore exhibit behaviors which differ from that of bulk water. Here, we investigate the phenomenon of hydrophobic gating, the process by which a nanopore may spontaneously dewet to form a "vapor lock" if the pore is sufficiently hydrophobic and/or narrow. This occurs without steric occlusion of the pore. Using molecular dynamics simulations with both rigid fixed-charge and polarizable (AMOEBA) force fields, we investigate this wetting/dewetting behavior in the transmembrane protein 175 ion channel. We examine how a range of rigid fixed-charge and polarizable water models affect wetting/dewetting in both the wild-type structure and in mutants chosen to cover a range of nanopore radii and pore-lining hydrophobicities. Crucially, we find that the rigid fixed-charge water models lead to similar wetting/dewetting behaviors, but that the polarizable water model resulted in an increased wettability of the hydrophobic gating region of the pore. This has significant implications for molecular simulations of nanoconfined water, as it implies that polarizability may need to be included if we are to gain detailed mechanistic insights into wetting/dewetting processes. These findings are of importance for the design of functionalized biomimetic nanopores (e.g., sensing or desalination) as well as for furthering our understanding of the mechanistic processes underlying biological ion channel function.

Effects of ionic strength on gating and permeation of TREK-2 K2P channels.

PloS one Public Library of Science (PLoS) 16:10 (2021) e0258275

Authors:

Linus J Conrad, Peter Proks, Stephen J Tucker

Abstract:

In addition to the classical voltage-dependent behavior mediated by the voltage-sensing-domains (VSD) of ion channels, a growing number of voltage-dependent gating behaviors are being described in channels that lack canonical VSDs. A common thread in their mechanism of action is the contribution of the permeating ion to this voltage sensing process. The polymodal K2P K+ channel, TREK2 responds to membrane voltage through a gating process mediated by the interaction of K+ with its selectivity filter. Recently, we found that this action can be modulated by small molecule agonists (e.g. BL1249) which appear to have an electrostatic influence on K+ binding within the inner cavity and produce an increase in the single-channel conductance of TREK-2 channels. Here, we directly probed this K+-dependent gating process by recording both macroscopic and single-channel currents of TREK-2 in the presence of high concentrations of internal K+. Surprisingly we found TREK-2 is inhibited by high internal K+ concentrations and that this is mediated by the concomitant increase in ionic-strength. However, we were still able to determine that the increase in single channel conductance in the presence of BL1249 was blunted in high ionic-strength, whilst its activatory effect (on channel open probability) persisted. These effects are consistent with an electrostatic mechanism of action of negatively charged activators such as BL1249 on permeation, but also suggest that their influence on channel gating is complex.

Ion channels as convergence points in the pathology of pulmonary arterial hypertension

Biochemical Society transactions Portland Press 49:4 (2021) 1855-1865

Authors:

Thibault RH Jouen-Tachoire, Stephen J Tucker, Paolo Tammaro

Abstract:

Pulmonary arterial hypertension (PAH) is a fatal disease of the cardiopulmonary system that lacks curative treatments. The main pathological event in PAH is elevated vascular resistance in the pulmonary circulation, caused by abnormal vasoconstriction and vascular remodelling. Ion channels are key determinants of vascular smooth muscle tone and homeostasis, and four PAH channelopathies (KCNK3, ABCC8, KCNA5, TRPC6) have been identified so far. However, the contribution of ion channels in other forms of PAH, which account for the majority of PAH patients, has been less well characterised. Here we reason that a variety of triggers of PAH (e.g. BMPR2 mutations, hypoxia, anorectic drugs) that impact channel function may contribute to the onset of the disease. We review the molecular mechanisms by which these 'extrinsic' factors converge on ion channels and provoke their dysregulation to promote the development of PAH. Ion channels of the pulmonary vasculature are therefore promising therapeutic targets because of the modulation they provide to both vasomotor tone and proliferation of arterial smooth muscle cells.

Water Nanoconfined in a Hydrophobic Pore: MD Simulations and Water Models

(2021)

Authors:

Charlotte Lynch, Gianni Klesse, Shanlin Rao, Stephen Tucker, Mark Sansom

Effects of Ionic Strength on Gating and Permeation of TREK-2 K2P channels

PLoS One Public Library of Science (2021)

Authors:

Linus Conrad, Peter Proks, Stephen Tucker

Abstract:

In addition to the classical voltage-dependent behavior mediated by voltage-sensing-domains (VSD), a growing number of voltage-dependent gating behaviors are being described in ion channels that lack canonical VSDs. A common thread in their mechanism of action is the contribution of the permeating ion to this voltage sensing process. The polymodal K2P K + channel TREK2 responds to membrane voltage through a gating process that is mediated by the interaction of K + with its selectivity filter. Recently, we have found that this action can be modulated by small molecule agonists (e.g. BL1249) which appear to have an electrostatic influence on K + binding within the inner cavity and produce an increase in the single-channel conductance of TREK-2 channels. Here, we directly probed this K + -dependent gating process by recording both macroscopic and single-channel currents of TREK-2 in the presence of high concentrations of internal K + . Surprisingly we found that the channel is inhibited by high internal K + concentrations and that this is mediated by the concomitant increase in ionic-strength. However, we were still able to determine that the increase in single channel conductance in the presence of BL1249 was blunted in high ionic-strength, whilst its activatory effect (on channel open probability) persisted. These effects are consistent with an electrostatic mechanism of action of negatively charged activators such as BL1249 on permeation, but also suggest that their influence on channel gating is more complex.