Horizon 2020 EuPRAXIA design study

Journal of Physics: Conference Series IOP Publishing 874:1 (2017)

Authors:

PA Walker, PD Alesini, AS Alexandrova, MP Anania, NE Andreev, I Andriyash, A Aschikhin, RW Assmann, T Audet, A Bacci, IF Barna, A Beaton, A Beck, A Beluze, A Bernhard, S Bielawski, FG Bisesto, J Boedewadt, F Brandi, O Bringer, R Brinkmann, E Bründermann, M Büscher, M Bussmann, GC Bussolino, A Chance, JC Chanteloup, M Chen, E Chiadroni, A Cianchi, J Clarke, J Cole, ME Couprie, M Croia, B Cros, J Dale, G Dattoli, N Delerue, O Delferriere, P Delinikolas, J Dias, U Dorda, K Ertel, A Ferran Pousa, M Ferrario, F Filippi, J Fils, R Fiorito, RA Fonseca, M Galimberti

Abstract:

The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.

Horizon 2020 EuPRAXIA design study

8TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE (IPAC 2017) 874 (2017)

Authors:

PA Walker, PD Alesini, AS Alexandrova, MP Anania, NE Andreev, I Andriyash, A Aschikhin, RW Assmann, T Audet, A Bacci, IF Barna, A Beaton, A Beck, A Beluze, A Bernhard, S Bielawski, FG Bisesto, J Boedewadt, F Brandi, O Bringer, R Brinkmann, E Bruendermann, M Buescher, M Bussmann, GC Bussolino, A Chance, JC Chanteloup, M Chen, E Chiadroni, A Cianchi, J Clarke, J Cole, ME Couprie, M Croia, B Cros, J Dale, G Dattoli, N Delerue, O Delferriere, P Delinikolas, J Dias, U Dorda, K Ertel, AF Pousa, M Ferrario, F Filippi, J Fils, R Fiorito, RA Fonseca, M Galimberti, A Gallo, D Garzella, P Gastinel, D Giove, A Giribono, LA Gizzi, FJ Gruener, AF Habib, LC Haefner, T Heinemann, B Hidding, BJ Holzer, SM Hooker, T Hosokai, A Irman, DA Jaroszynski, S Jaster-Merz, C Joshi, MC Kaluza, M Kando, OS Karger, S Karsch, E Khazanov, D Khikhlukha, A Knetsch, D Kocon, P Koester, O Kononenko, G Korn, I Kostyukov, L Labate, C Lechner, WP Leemans, A Lehrach, FY Li, X Li, V Libov, A Lifschitz, V Litvinenko, W Lu, AR Maier, V Malka, GG Manahan, SPD Mangles, B Marchetti, A Marocchino, AM De la Ossa, JL Martins, F Massimo, F Mathieu, G Maynard, TJ Mehrling, AY Molodozhentsev, A Mosnier, A Mostacci, AS Mueller, Z Najmudin, PAP Nghiem, F Nguyen, P Niknejadi, J Osterhoff, D Papadopoulos, B Patrizi, R Pattathil, V Petrillo, MA Pocsai, K Poder, R Pompili, L Pribyl, D Pugacheva, S Romeo, AR Rossi, E Roussel, AA Sahai, P Scherkl, U Schramm, CB Schroeder, J Schwindling, J Scifo, L Serafini, ZM Sheng, LO Silva, T Silva, C Simon, U Sinha, A Specka, MJV Streeter, EN Svystun, D Symes, C Szwaj, G Tauscher, AGR Thomas, N Thompson, G Toci, P Tomassini, C Vaccarezza, M Vannini, JM Vieira, F Villa, C-G Wahlstrom, R Walczak, MK Weikum, CP Welsch, C Wiemann, J Wolfenden, G Xia, M Yabashi, L Yu, J Zhu, A Zigler, IOP

Blind digital holographic microscopy

ractical Holography XXXI: Materials and Applications; Society of Photo-Optical Instrumentation Engineers (2017)

Authors:

Patrick N Anderson, Florian Wiegandt, Daniel J Treacher, MM Mang, I Gianani, A Schiavi, David T Lloyd, Kevin O'Keeffe, Simon M Hooker, Ian A Walmsley

Abstract:

A blind variant of digital holographic microscopy is presented that removes the requirement for a well-characterized, highly divergent reference beam. This is achieved by adopting an off-axis recording geometry where a sequence of holograms is recorded as the reference is tilted, and an iter ative algorithm that estimates the amplitudes and phases of both beams while simultaneously enhancing the numerical aperture. Numerical simulations have demonstrated the accuracy and robustness of this approach when applied to the coherent imaging problem.

Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics

(2017)

Authors:

David T Lloyd, Kevin O'Keeffe, Adam S Wyatt, Patrick N Anderson, Daniel Treacher, Simon M Hooker

The coherent combination of fibre lasers - Towards realistic applications

AIP Conference Proceedings AIP Publishing 1812:1 (2017)

Authors:

Peter Tudor, Laura Corner, Roman Walczak

Abstract:

To drive a laser-plasma wakefield, high peak-power laser pulses are required. For useful accelerator applications, it is also necessary to have driving lasers with high efficiency, repetition rates, and average power. The coherent combination of Ytterbium-doped fibre laser amplifiers is a promising potential solution, and previous work has demonstrated the successful combination of near-identical ultrafast fibre lasers. We report here the combination of significantly mismatched Ytterbium-doped photonic crystal fibre amplifiers with a combined efficiency of 96%, while the locked power output remained stable for 6 hours. The combined output of the system had a total gain of 12 dB, with no detrimental effect on the compressed pulse width observed.