Generation of a train of ultrashort pulses from a compact birefringent crystal array.

Appl Opt 46:22 (2007) 5142-5146

Authors:

B Dromey, M Zepf, M Landreman, K O'keeffe, T Robinson, SM Hooker

Abstract:

A linear array of n calcite crystals is shown to allow the generation of a high contrast (>10:1) train of 2(n) high energy (>100 microJ) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup.

Simple technique for generating trains of ultrashort pulses.

Opt Lett 32:15 (2007) 2203-2205

Authors:

T Robinson, K O'Keeffe, M Landreman, SM Hooker, M Zepf, B Dromey

Abstract:

A simple method for generating trains of high-contrast femtosecond pulses is proposed and demonstrated: a linearly polarized, frequency-chirped laser pulse is passed through a multiple-order wave plate and a linear polarizer. It is shown theoretically that this arrangement forms a train of laser pulses, and in experiments the production of a train of approximately 100 pulses, each of 200 fs duration, is demonstrated. In combination with an acousto-optic programmable dispersive filter this technique could be used to generate and control pulse trains with chirped spacing. Pulse trains of this type have widespread applications in ultrafast optics.

Leading neutron energy and pT distributions in deep inelastic scattering and photoproduction at HERA

Nuclear Physics B 776:1-2 (2007) 1-37

Authors:

S Chekanov, M Derrick, S Magill, S Miglioranzi, B Musgrave, D Nicholass, J Repond, R Yoshida, MCK Mattingly, M Jechow, N Pavel, AG Yagües Molina, S Antonelli, P Antonioli, G Bari, M Basile, L Bellagamba, M Bindi, D Boscherini, A Bruni, G Bruni, L Cifarelli, F Cindolo, A Contin, M Corradi, S De Pasquale, G Iacobucci, A Margotti, R Nania, A Polini, L Rinaldi, G Sartorelli, A Zichichi, D Bartsch, I Brock, S Goers, H Hartmann, E Hilger, HP Jakob, M Jüngst, OM Kind, E Paul, R Renner, U Samson, V Schönberg, R Shehzadi, M Wlasenko, NH Brook, GP Heath, JD Morris, T Namsoo, M Capua, S Fazio, A Mastroberardino, M Schioppa, G Susinno, E Tassi, JY Kim, KJ Ma, ZA Ibrahim, B Kamaluddin, WAT Wan Abdullah, Y Ning, Z Ren, F Sciulli, J Chwastowski, A Eskreys, J Figiel, A Galas, M Gil, K Olkiewicz, P Stopa, L Zawiejski, L Adamczyk, T Bołd, I Grabowska-Bołd, D Kisielewska, J Łukasik, M Przybycień, L Suszycki, A Kotański, W Słomiński, V Adler, U Behrens, I Bloch, C Blohm, A Bonato, K Borras, N Coppola, A Dossanov, J Fourletova, A Geiser, D Gladkov, P Göttlicher, I Gregor, T Haas, W Hain, C Horn, B Kahle, U Klein

Abstract:

The production of energetic neutrons in ep collisions has been studied with the ZEUS detector at HERA. The neutron energy and pT2 distributions were measured with a forward neutron calorimeter and tracker in a 40   pb-1 sample of inclusive deep inelastic scattering (DIS) data and a 6   pb-1 sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper pT2 distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data. © 2007 Elsevier B.V. All rights reserved.

Measurement of D Mesons Production in Deep Inelastic Scattering at HERA

Journal of High Energy Physics (2007)

Authors:

JE Ferrando, L. Labarga, M. Zambrana, R. Walsh

Diffractive photoproduction of D*±(2010) at HERA

European Physical Journal C 51:2 (2007) 301-315

Authors:

S Chekanov, M Derrick, S Magill, B Musgrave, D Nicholass, J Repond, R Yoshida, MCK Mattingly, M Jechow, N Pavel, AG Yagües Molina, S Antonelli, P Antonioli, G Bari, M Basile, L Bellagamba, M Bindi, D Boscherini, A Bruni, G Bruni, L Cifarelli, F Cindolo, A Contin, M Corradi, S De Pasquale, G Iacobucci, A Margotti, R Nania, A Polini, G Sartorelli, A Zichichi, D Bartsch, I Brock, S Goers, H Hartmann, E Hilger, HP Jakob, M Jüngst, OM Kind, E Paul, R Renner, U Samson, V Schönberg, R Shehzadi, M Wlasenko, NH Brook, GP Heath, JD Morris, T Namsoo, M Capua, S Fazio, A Mastroberardino, M Schioppa, G Susinno, E Tassi, JY Kim, KJ Ma, ZA Ibrahim, B Kamaluddin, WAT Wan Abdullah, Y Ning, Z Ren, F Sciulli, J Chwastowski, A Eskreys, J Figiel, A Galas, M Gil, K Olkiewicz, P Stopa, L Zawiejski, L Adamczyk, T Bołd, I Grabowska-Bołd, D Kisielewska, J Łukasik, M Przybycień, L Suszycki, A Kotański, W Słomiński, V Adler, U Behrens, I Bloch, C Blohm, A Bonato, K Borras, R Ciesielski, N Coppola, A Dossanov, V Drugakov, J Fourletova, A Geiser, D Gladkov, P Göttlicher, I Gregor, T Haas, W Hain, C Horn, B Kahle, II Katkov

Abstract:

Diffractive photoproduction of D*±(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb-1. The D* mesons were reconstructed in the kinematic range: transverse momentum pT(D*) > 1.9 GeV and pseudorapidity |η(D*)|<1.6, using the decay D*+→D0π+ s followed by D0→K-π+(+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q2 < 1 GeV2, in two ranges of the Pomeron fractional momentum xIP<0.035 and xIP<0.01. The relative contribution of diffractive events to the inclusive D*±(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation. © Springer-Verlag Berlin Heidelberg 2007.