First results on sub-GeV spin-dependent dark matter interactions with 7Li

European Physical Journal C Springer Nature 79:7 (2019) 630

Authors:

AH Abdelhameed, G Angloher, P Bauer, A Bento, E Bertoldo, C Bucci, L Canonica, A D’Addabbo, X Defay, S Di Lorenzo, A Erb, FV Feilitzsch, N Ferreiro Iachellini, S Fichtinger, A Fuss, P Gorla, D Hauff, J Jochum, A Kinast, H Kluck, H Kraus, A Langenkämper, M Mancuso, V Mokina, E Mondragon, A Münster, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, F Pröbst, F Reindl, J Rothe, K Schäffner, J Schieck, V Schipperges, D Schmiedmayer, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, C Türkoğlu, I Usherov, M Willers, V Zema, M Chapellier, A Giuliani, C Nones, DV Poda, VN Shlegel, M Velázquez, AS Zolotarova

Bright and fast scintillation of organolead perovskite MAPbBr₃ at low temperatures

Materials Horizons Royal Society of Chemistry (2019)

Authors:

V Mykhaylyk, Hans Kraus, M Saliba

Abstract:

We report the excellent scintillation properties of MAPbBr3, an organic–inorganic trihalide perovskite (OTP). The characteristic scintillation time constants were determined using pulsed monochromatic 14 keV X-rays from a synchrotron. We find that between 50 and 130 K the MAPbBr3 crystal exhibits a very fast and intense scintillation response, with the fast (τf) and slow (τs) decay components reaching 0.1 and 1 ns, respectively. The light yield of MAPbBr3 is estimated to be 90 000 ± 18 000 ph MeV−1 at 77 K and 116 000 ± 23 000 ph MeV−1 at 8 K.

Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data

Physical Review Letters American Physical Society (APS) 122:13 (2019) 131301

Authors:

DS Akerib, S Alsum, HM Araújo, X Bai, J Balajthy, P Beltrame, EP Bernard, A Bernstein, TP Biesiadzinski, EM Boulton, B Boxer, P Brás, S Burdin, D Byram, MC Carmona-Benitez, C Chan, JE Cutter, TJR Davison, E Druszkiewicz, SR Fallon, A Fan, S Fiorucci, RJ Gaitskell, J Genovesi, C Ghag, MGD Gilchriese, C Gwilliam, CR Hall, SJ Haselschwardt, SA Hertel, DP Hogan, M Horn, DQ Huang, CM Ignarra, RG Jacobsen, O Jahangir, W Ji, K Kamdin, K Kazkaz, D Khaitan, R Knoche, EV Korolkova, S Kravitz, VA Kudryavtsev, BG Lenardo, KT Lesko, J Liao, J Lin, A Lindote, MI Lopes, A Manalaysay, RL Mannino, N Marangou, MF Marzioni, DN McKinsey, D-M Mei, M Moongweluwan, JA Morad, A St J Murphy, A Naylor, C Nehrkorn, HN Nelson, F Neves, KC Oliver-Mallory, KJ Palladino, EK Pease, Q Riffard, GRC Rischbieter, C Rhyne, P Rossiter, S Shaw, TA Shutt, C Silva, M Solmaz, VN Solovov, P Sorensen, TJ Sumner, M Szydagis, DJ Taylor, WC Taylor, BP Tennyson, PA Terman, DR Tiedt, WH To, M Tripathi, L Tvrznikova, U Utku, S Uvarov, V Velan, RC Webb, JT White, TJ Whitis, MS Witherell, FLH Wolfs, D Woodward, J Xu, K Yazdani, C Zhang

Measurement of the Gamma Ray Background in the Davis Cavern at the Sanford Underground Research Facility

(2019)

Authors:

DS Akerib, CW Akerlof, SK Alsum, N Angelides, HM Araújo, JE Armstrong, M Arthurs, X Bai, J Balajthy, S Balashov, A Baxter, EP Bernard, A Biekert, TP Biesiadzinski, KE Boast, B Boxer, P Brás, JH Buckley, VV Bugaev, S Burdin, JK Busenitz, C Carels, DL Carlsmith, MC Carmona-Benitez, M Cascella, C Chan, A Cole, A Cottle, JE Cutter, CE Dahl, L de Viveiros, JEY Dobson, E Druszkiewicz, TK Edberg, A Fan, S Fiorucci, H Flaecher, T Fruth, RJ Gaitskell, J Genovesi, C Ghag, MGD Gilchriese, S Gokhale, MGD van der Grinten, CR Hall, S Hans, J Harrison, SJ Haselschwardt, SA Hertel, JY-K Hor, M Horn, DQ Huang, CM Ignarra, O Jahangir, W Ji, J Johnson, AC Kaboth, K Kamdin, D Khaitan, A Khazov, WT Kim, CD Kocher, L Korley, EV Korolkova, J Kras, H Kraus, SW Kravitz, L Kreczko, B Krikler, VA Kudryavtsev, EA Leason, J Lee, DS Leonard, KT Lesko, C Levy, J Li, J Liao, F-T Liao, J Lin, A Lindote, R Linehan, WH Lippincott, R Liu, X Liu, C Loniewski, MI Lopes, B López Paredes, W Lorenzon, S Luitz, JM Lyle, PA Majewski, A Manalaysay, L Manenti, RL Mannino, N Marangou, MF Marzioni, DN McKinsey, J McLaughlin, Y Meng, EH Miller, ME Monzani, JA Morad, E Morrison, BJ Mount, A St J Murphy, D Naim, A Naylor, C Nedlik, C Nehrkorn, HN Nelson, F Neves, J Nikoleyczik, A Nilima, I Olcina, KC Oliver-Mallory, S Pal, KJ Palladino, EK Pease, BP Penning, G Pereira, A Piepke, K Pushkin, J Reichenbacher, CA Rhyne, Q Riffard, GRC Rischbieter, JP Rodrigues, R Rosero, P Rossiter, G Rutherford, ABMR Sazzad, RW Schnee, M Schubnell, PR Scovell, D Seymour, S Shaw, TA Shutt, JJ Silk, C Silva, M Solmaz, VN Solovov, P Sorensen, I Stancu, A Stevens, TM Stiegler, K Stifter, M Szydagis, WC Taylor, R Taylor, D Temples, PA Terman, DR Tiedt, M Timalsina, A Tomás, M Tripathi, L Tvrznikova, U Utku, S Uvarov, A Vacheret, JJ Wang, JR Watson, RC Webb, RG White, TJ Whitis, FLH Wolfs, D Woodward, J Yin

Rapid destruction of protoplanetary discs due to external photoevaporation in star-forming regions

Monthly Notices of the Royal Astronomical Society 485:4 (2019) 4893–4905

Authors:

Rhana B Nicholson, Richard J Parker, Ross P Church, Melvyn B Davies, Niamh M Fearon, Sam R J Walton

Abstract:

We analyse N-body simulations of star-forming regions to investigate the effects of external far- and extreme-ultraviolet photoevaporation from massive stars on protoplanetary discs. By varying the initial conditions of simulated star-forming regions, such as the spatial distribution, net bulk motion (virial ratio), and density, we investigate which parameters most affect the rate at which discs are dispersed due to external photoevaporation. We find that disc dispersal due to external photoevaporation is faster in highly substructured star-forming regions than in smooth and centrally concentrated regions. Subvirial star-forming regions undergoing collapse also show higher rates of disc dispersal than regions that are in virial equilibrium or are expanding. In moderately dense (∼100 M⊙ pc−3) regions, half of all protoplanetary discs with radii ≥100 au are photoevaporated within 1 Myr, three times faster than is currently suggested by observational studies. Discs in lower density star-forming regions (∼10 M⊙ pc−3) survive for longer, but half are still dispersed on short time-scales (∼2 Myr). This demonstrates that the initial conditions of the star-forming regions will greatly impact the evolution and lifetime of protoplanetary discs. These results also imply that either gas giant planet formation is extremely rapid and occurs before the gas component of discs is  evaporated, or gas giants only form in low-density star-forming regions where no massive stars are present to photoevaporate gas from protoplanetary discs.