Electronic structure, reflectivity and X-ray luminescence of MAPbCl3 crystal in orthorhombic phase

Scientific Reports Springer Science and Business Media LLC 15:1 (2025) 12912

Authors:

Volodymyr Kolomiets, Volodymyr Kapustianyk, Mariya Kovalenko, Hans Kraus, Oksana Chukova, Yaroslav Zhydachevskyy, Wagas Zia, Michael Saliba, Vitaliy Mykhaylyk

Abstract:

<jats:title>Abstract</jats:title> <jats:p>This study provides a comprehensive analysis of the electronic structure, reflectivity, and luminescent spectra of the organic-inorganic, metal-halide MAPbCl<jats:sub>3</jats:sub> perovskite, which has considerable potential for various optoelectronic applications. Using density functional theory (DFT) calculations, we investigated the electronic structure of MAPbCl<jats:sub>3</jats:sub> and interpreted the key features of its reflectivity spectra across a wide energy range from 3 to 10 eV. The reflectivity spectra reveal prominent excitonic features at 3.22 eV near the absorption edge and additional optical transitions at higher energies, highlighting the material’s intricate electronic structure. Furthermore, we examined the temperature dependence of radiative decay dynamics under high-energy radiation through X-ray luminescence spectra and decay time measurements. We observe emission from free and bound excitons with an exceptionally short decay time (≤ 1 ns) and significant thermal quenching at low temperatures (100 K) in the 385–430 nm range. These findings underline the importance of continued exploration of optoelectronic properties of the material to enhance its performance in practical applications.</jats:p>

Nuclear Recoil Calibration at Sub-keV Energies in LUX and Its Impact on Dark Matter Search Sensitivity.

Physical review letters 134:6 (2025) 061002

Authors:

DS Akerib, S Alsum, HM Araújo, X Bai, J Balajthy, J Bang, A Baxter, EP Bernard, A Bernstein, TP Biesiadzinski, EM Boulton, B Boxer, P Brás, S Burdin, D Byram, MC Carmona-Benitez, C Chan, JE Cutter, L de Viveiros, E Druszkiewicz, A Fan, S Fiorucci, RJ Gaitskell, C Ghag, MGD Gilchriese, C Gwilliam, CR Hall, SJ Haselschwardt, SA Hertel, DP Hogan, M Horn, DQ Huang, CM Ignarra, RG Jacobsen, O Jahangir, W Ji, K Kamdin, K Kazkaz, D Khaitan, EV Korolkova, S Kravitz, VA Kudryavtsev, E Leason, KT Lesko, J Liao, J Lin, A Lindote, MI Lopes, A Manalaysay, RL Mannino, N Marangou, DN McKinsey, D-M Mei, JA Morad, A St J Murphy, A Naylor, C Nehrkorn, HN Nelson, F Neves, A Nilima, KC Oliver-Mallory, KJ Palladino, C Rhyne, Q Riffard, GRC Rischbieter, P Rossiter, S Shaw, TA Shutt, C Silva, M Solmaz, VN Solovov, P Sorensen, TJ Sumner, N Swanson, M Szydagis, DJ Taylor, R Taylor, WC Taylor, BP Tennyson, PA Terman, DR Tiedt, WH To, L Tvrznikova, U Utku, A Vacheret, A Vaitkus, V Velan, RC Webb, JT White, TJ Whitis, MS Witherell, FLH Wolfs, D Woodward, X Xiang, J Xu, C Zhang

Abstract:

Dual-phase xenon time projection chamber (TPC) detectors offer heightened sensitivities for dark matter detection across a spectrum of particle masses. To broaden their capability to low-mass dark matter interactions, we investigated the light and charge responses of liquid xenon (LXe) to sub-keV nuclear recoils. Using neutron events from a pulsed Adelphi Deuterium-Deuterium neutron generator, an in situ calibration was conducted on the LUX detector. We demonstrate direct measurements of light and charge yields down to 0.45 and 0.27 keV, respectively, both approaching single quanta production, the physical limit of LXe detectors. These results hold significant implications for the future of dual-phase xenon TPCs in detecting low-mass dark matter via nuclear recoils.

Two-neutrino double electron capture of 124Xe in the first LUX-ZEPLIN exposure

Journal of Physics G Nuclear and Particle Physics IOP Publishing 52:1 (2025) 015103

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, F Alder, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, A Baker, S Balashov, J Bang, JW Bargemann, EE Barillier, K Beattie, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, E Bishop, GM Blockinger, B Boxer, CAJ Brew, P Brás, S Burdin, M Buuck, MC Carmona-Benitez, M Carter, A Chawla, H Chen, YT Chin, NI Chott, MV Converse, R Coronel, A Cottle, G Cox, D Curran, CE Dahl, A David, J Delgaudio, S Dey, L de Viveiros, L Di Felice, C Ding, JEY Dobson, E Druszkiewicz, S Dubey, SR Eriksen, A Fan, NM Fearon, N Fieldhouse, S Fiorucci, H Flaecher, ED Fraser, TMA Fruth, RJ Gaitskell, A Geffre, J Genovesi, C Ghag, R Gibbons, S Gokhale, J Green, MGD van der Grinten, JJ Haiston, CR Hall, S Han, E Hartigan-OConnor, SJ Haselschwardt, MA Hernandez, SA Hertel, G Heuermann, GJ Homenides, M Horn, DQ Huang, D Hunt, E Jacquet, RS James, J Johnson, AC Kaboth, AC Kamaha, M Kannichankandy, D Khaitan, A Khazov, I Khurana, J Kim, YD Kim, J Kingston, R Kirk, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, VA Kudryavtsev, DS Leonard, KT Lesko, C Levy, J Lin, A Lindote, WH Lippincott, MI Lopes, W Lorenzon, C Lu, S Luitz, PA Majewski, A Manalaysay, RL Mannino, C Maupin, ME McCarthy, G McDowell, DN McKinsey, J McLaughlin, JB McLaughlin, R McMonigle, E Mizrachi, A Monte, ME Monzani, E Morrison, BJ Mount, M Murdy, ASJ Murphy, A Naylor, HN Nelson, F Neves, A Nguyen, CL O’Brien, I Olcina, KC Oliver-Mallory, J Orpwood, KY Oyulmaz, KJ Palladino, J Palmer, NJ Pannifer, N Parveen, SJ Patton, B Penning, G Pereira, E Perry, T Pershing, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, Q Riffard, GRC Rischbieter, E Ritchey, HS Riyat, R Rosero, T Rushton, D Rynders, D Santone, ABMR Sazzad, RW Schnee, G Sehr, B Shafer, S Shaw, T Shutt, JJ Silk, C Silva, G Sinev, J Siniscalco, R Smith, VN Solovov, P Sorensen, J Soria, A Stevens, K Stifter, B Suerfu, TJ Sumner, M Szydagis, DR Tiedt, M Timalsina, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, A Vacheret, AC Vaitkus, O Valentino, V Velan, A Wang, JJ Wang, Y Wang, JR Watson, L Weeldreyer, TJ Whitis, K Wild, M Williams, WJ Wisniewski, L Wolf, FLH Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, J Xu, Y Xu, M Yeh, D Yeum, W Zha, EA Zweig

Erratum to: DoubleTES detectors to investigate the CRESST low energy background: results from above-ground prototypes

European Physical Journal C Springer Nature 84:11 (2024) 1227

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, L Canonica, A D’Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, J Jochum, M Kaznacheeva, A Kinast, H Kluck, H Kraus, S Kuckuk, A Langenkämper, M Mancuso, L Marini, B Mauri, L Meyer, V Mokina, M Olmi, T Ortmann, C Pagliarone, L Pattavina, F Petricca, W Potzel, P Povinec, F Pröbst, F Pucci, F Reindl, J Rothe, K Schäffner, J Schieck, S Schönert, C Schwertner, M Stahlberg, L Stodolsky, C Strandhagen, R Strauss, I Usherov, F Wagner, V Wagner, V Zema

Constraints on self-interaction cross-sections of dark matter in universal bound states from direct detection

The European Physical Journal C SpringerOpen 84:11 (2024) 1170

Authors:

G Angloher, S Banik, G Benato, A Bento, A Bertolini, R Breier, C Bucci, J Burkhart, E Cipelli, L Canonica, A D’Addabbo, S Di Lorenzo, L Einfalt, A Erb, FV Feilitzsch, S Fichtinger, D Fuchs, A Garai, VM Ghete, P Gorla, PV Guillaumon, S Gupta, D Hauff, M Ješkovský, H Kraus

Abstract:

Λ-Cold Dark Matter (ΛCDM) has been successful at explaining the large-scale structures in the universe but faces severe issues on smaller scales when compared to observations. Introducing self-interactions between dark matter particles claims to provide a solution to the small-scale issues in the ΛCDM simulations while being consistent with the observations at large scales. The existence of the energy region in which these self-interactions between dark matter particles come close to saturating the S-wave unitarity bound can result in the formation of dark matter bound states called darkonium. In this scenario, all the low energy scattering properties are determined by a single parameter, the inverse scattering length γ. In this work, we set bounds on γ by studying the impact of darkonium on the observations at direct detection experiments using data from CRESST-III and XENON1T. The exclusion limits on γ are then subsequently converted to exclusion limits on the self-interaction cross-section and compared with the constraints from astrophysics and N-body simulations.