Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment
Physical Review Letters American Physical Society (APS) 135:1 (2025) 011802
Abstract:
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of tonne-years from 280 live days of LZ operation, of which tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of , representing a noteworthy new background. After removal of artificial signal-like events injected into the dataset to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses . The strongest SI exclusion set is at the 90% confidence level and the best SI median sensitivity achieved is , both for a mass of . Published by the American Physical Society 2025Flow and thermal modelling of the argon volume in the DarkSide-20k TPC
Journal of Instrumentation IOP Publishing 20:06 (2025) P06046
Abstract:
The DarkSide-20k dark matter experiment, currently under construction at LNGS, features a dual-phase time projection chamber (TPC) with a ∼ 50 t argon target from an underground well. At this scale, it is crucial to optimise the argon flow pattern for efficient target purification and for fast distribution of internal gaseous calibration sources with lifetimes of the order of hours. To this end, we have performed computational fluid dynamics simulations and heat transfer calculations. The residence time distribution shows that the detector is well-mixed on time-scales of the turnover time (∼ 40 d). Notably, simulations show that despite a two-order-of-magnitude difference between the turnover time and the half-life of 83mKr of 1.83 h, source atoms have the highest probability to reach the centre of the TPC 13 min after their injection, allowing for a homogeneous distribution before undergoing radioactive decay. We further analyse the thermal aspects of dual-phase operation and define the requirements for the formation of a stable gas pocket on top of the liquid. We find a best-estimate value for the heat transfer rate at the liquid-gas interface of 62 W with an upper limit of 144 W and a minimum gas pocket inlet temperature of 89 K to avoid condensation on the acrylic anode. This study also informs the placement of liquid inlets and outlets in the TPC. The presented techniques are widely applicable to other large-scale, noble-liquid detectors.First Constraint on Atmospheric Millicharged Particles with the LUX-ZEPLIN Experiment
Physical Review Letters American Physical Society (APS) 134:24 (2025) 241802
New Constraints on Cosmic Ray-Boosted Dark Matter from the LUX-ZEPLIN Experiment
Physical Review Letters American Physical Society (APS) 134:24 (2025) 241801
Quality assurance and quality control of the 26 m 2 SiPM production for the DarkSide-20k dark matter experiment
The European Physical Journal C SpringerOpen 85:5 (2025) 534