Production, quality assurance and quality control of the SiPM Tiles for the DarkSide-20k Time Projection Chamber

The European Physical Journal C Springer Science and Business Media LLC 85:11 (2025) 1334

Authors:

F Acerbi, P Adhikari, P Agnes, I Ahmad, S Albergo, IF Albuquerque, T Alexander, AK Alton, P Amaudruz, M Angiolilli, E Aprile, M Atzori Corona, DJ Auty, M Ave, IC Avetisov, O Azzolini, HO Back, Z Balmforth, A Barrado Olmedo, P Barrillon, G Batignani, P Bhowmick, M Bloem, S Blua, V Bocci, W Bonivento, B Bottino, MG Boulay, T Braun, A Buchowicz, S Bussino, J Busto, M Cadeddu, M Cadoni, R Calabrese, V Camillo, A Caminata, N Canci, M Caravati, M Cárdenas-Montes, N Cargioli, M Carlini, A Castellani, P Cavalcante, S Cebrian, S Chashin, A Chepurnov, S Choudhary, L Cifarelli, B Cleveland, Y Coadou, V Cocco, D Colaiuda, E Conde Vilda, L Consiglio, AFV Cortez, BS Costa, M Czubak, M D’Aniello, S D’Auria, MD Da Rocha Rolo, A Dainty, G Darbo, S Davini, R de Asmundis, S De Cecco, G Dellacasa, AV Derbin, A Devoto, L Di Noto, P Di Stefano, LK Dias, D Díaz Mairena, C Dionisi, G Dolganov, F Dordei, V Dronik, F Dylon, A Elersich, E Ellingwood, T Erjavec, N Fearon, M Fernandez Diaz, L Ferro, A Ficorella, G Fiorillo, D Fleming, P Franchini, D Franco, H Frandini Gatti, E Frolov, F Gabriele, D Gahan, C Galbiati, G Galiński, G Gallina, M Garbini, P Garcia Abia, A Gawdzik, A Gendotti, GK Giovanetti, V Goicoechea Casanueva, A Gola, L Grandi, G Grauso, G Grilli di Cortona, A Grobov, M Gromov, M Gulino, BR Hackett, AL Hallin, A Hamer, M Haranczyk, B Harrop, T Hessel, C Hidalgo, J Hollingham, S Horikawa, J Hu, F Hubaut, D Huff, T Hugues, EV Hungerford, A Ianni, A Ianni, V Ippolito, A Jamil, C Jillings, R Keloth, N Kemmerich, A Kemp, M Kimura, A Klenin, K Kondo, G Korga, L Kotsiopoulou, S Koulosousas, A Kubankin, P Kunzé, M Kuss, M Kuźniak, M Kuzwa, M La Commara, M Lai, E Le Guirriec, E Leason, A Leoni, L Lidey, J Lipp, M Lissia, L Luzzi, O Lychagina, O Macfadyen, I Machts, IN Machulin, S Manecki, I Manthos, L Mapelli, A Marasciulli, SM Mari, C Mariani, J Maricic, M Martinez, CJ Martoff, G Matteucci, K Mavrokoridis, AB McDonald, S Merzi, A Messina, R Milincic, S Minutoli, A Mitra, J Monroe, E Moretti, M Morrocchi, A Morsy, T Mroz, VN Muratova, M Murra, P Musico, R Nania, M Nessi, G Nieradka, K Nikolopoulos, E Nikoloudaki, I Nikulin, J Nowak, K Olchanski, A Oleinik, V Oleynikov, P Organtini, A Ortiz de Solórzano, A Padmanabhan, M Pallavicini, L Pandola, E Pantic, E Paoloni, D Papi, B Park, G Pastuszak, G Paternoster, R Pavarani, A Peck, K Pelczar, R Perez, V Pesudo, S Piacentini, N Pino, G Plante, A Pocar, S Pordes, P Pralavorio, E Preosti, D Price, M Pronesti, S Puglia, M Queiroga Bazetto, F Raffaelli, F Ragusa, Y Ramachers, A Ramirez, S Ravinthiran, M Razeti, AL Renshaw, A Repond, M Rescigno, S Resconi, F Retiere, LP Rignanese, A Ritchie-Yates, A Rivetti, A Roberts, C Roberts, G Rogers, L Romero, M Rossi, A Rubbia, D Rudik, J Runge, MA Sabia, P Salomone, O Samoylov, S Sanfilippo, D Santone, R Santorelli, EM Santos, I Sargeant, C Savarese, E Scapparone, FG Schuckman, G Scioli, DA Semenov, M Sestu, V Shalamova, S Sharma Poudel, A Sheshukov, M Simeone, P Skensved, MD Skorokhvatov, O Smirnov, T Smirnova, B Smith, F Spadoni, M Spangenberg, A Steri, V Stornelli, S Stracka, A Sung, C Sunny, Y Suvorov, AM Szelc, O Taborda, R Tartaglia, A Taylor, J Taylor, G Testera, K Thieme, A Thompson, S Torres-Lara, A Tricomi, S Tullio, EV Unzhakov, M Van Uffelen, P Ventura, T Viant, S Viel, A Vishneva, RB Vogelaar, J Vossebeld, B Vyas, M Wada, M Walczak, Y Wang, S Westerdale, L Williams, MM Wojcik, M Wojcik, C Yang, J Yin, A Zabihi, P Zakhary, A Zani, Y Zhang, T Zhu, A Zichichi, G Zuzel, MP Zykova

Abstract:

Abstract The DarkSide-20k dark matter direct detection experiment will employ a $${21}\,\hbox {m}^{2}$$ 21 m 2 silicon photomultiplier (SiPM) array, instrumenting a dual-phase 50 tonnes liquid argon Time Projection Chamber (TPC). SiPMs are arranged into modular photosensors called Tiles , each integrating 24 SiPMs onto a printed circuit board (PCB) that provides signal amplification, power distribution, and a single-ended output for simplified readout. $$16$$ 16 Tiles are further grouped into Photo-Detector Units (PDUs). This paper details the production of the Tiles and the Quality Assurance and Quality Control (QA-QC) protocol established to ensure their performance and uniformity. The production and QA-QC of the Tiles are carried out at Nuova Officina Assergi (NOA), an ISO-6 clean room facility at LNGS. This process includes wafer-level cryogenic characterisation, precision die attaching, wire bonding, and extensive electrical and optical validation of each Tile. The overall production yield exceeds 83.5%, matching the requirements of the DarkSide-20k production plan. These results validate the robustness of the Tile design and its suitability for operation in a cryogenic environment.

Dark Matter Search Results from 4.2 Tonne-Years of Exposure of the LUX-ZEPLIN (LZ) Experiment

Physical Review Letters American Physical Society (APS) 135:1 (2025) 011802

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, F Alder, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, A Baker, S Balashov, J Bang, JW Bargemann, EE Barillier, D Bauer, K Beattie, T Benson, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, E Bishop, GM Blockinger, B Boxer, CAJ Brew, P Brás, S Burdin, M Buuck, MC Carmona-Benitez, M Carter, A Chawla, H Chen, JJ Cherwinka, YT Chin, NI Chott, MV Converse, R Coronel, A Cottle, G Cox, D Curran, CE Dahl, I Darlington, S Dave, A David, J Delgaudio, S Dey, L de Viveiros, L Di Felice, C Ding, JEY Dobson, E Druszkiewicz, S Dubey, SR Eriksen, A Fan, S Fayer, NM Fearon, N Fieldhouse, S Fiorucci, H Flaecher, ED Fraser, TMA Fruth, RJ Gaitskell, A Geffre, J Genovesi, C Ghag, A Ghosh, R Gibbons, S Gokhale, J Green, MGD van der Grinten, JJ Haiston, CR Hall, TJ Hall, S Han, E Hartigan-O’Connor, SJ Haselschwardt, MA Hernandez, SA Hertel, G Heuermann, GJ Homenides, M Horn, DQ Huang, D Hunt, E Jacquet, RS James, J Johnson, AC Kaboth, AC Kamaha, Meghna K K., D Khaitan, A Khazov, I Khurana, J Kim, YD Kim, J Kingston, R Kirk, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, VA Kudryavtsev, C Lawes, DS Leonard, KT Lesko, C Levy, J Lin, A Lindote, WH Lippincott, MI Lopes, W Lorenzon, C Lu, S Luitz, PA Majewski, A Manalaysay, RL Mannino, C Maupin, ME McCarthy, G McDowell, DN McKinsey, J McLaughlin, JB McLaughlin, R McMonigle, E Mizrachi, A Monte, ME Monzani, JD Morales Mendoza, E Morrison, BJ Mount, M Murdy, A St J Murphy, A Naylor, HN Nelson, F Neves, A Nguyen, CL O’Brien, I Olcina, KC Oliver-Mallory, J Orpwood, KY Oyulmaz, KJ Palladino, J Palmer, NJ Pannifer, N Parveen, SJ Patton, B Penning, G Pereira, E Perry, T Pershing, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, E Ritchey, HS Riyat, R Rosero, T Rushton, D Rynders, D Santone, ABMR Sazzad, RW Schnee, G Sehr, B Shafer, S Shaw, T Shutt, JJ Silk, C Silva, G Sinev, J Siniscalco, R Smith, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, M Szydagis, DR Tiedt, M Timalsina, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, A Usón, A Vacheret, AC Vaitkus, O Valentino, V Velan, A Wang, JJ Wang, Y Wang, JR Watson, L Weeldreyer, TJ Whitis, K Wild, M Williams, WJ Wisniewski, L Wolf, FLH Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, J Xu, Y Xu, M Yeh, D Yeum, W Zha, EA Zweig

Abstract:

We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of 4.2 ± 0.1 tonne-years from 280 live days of LZ operation, of which 3.3 ± 0.1 tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from Pb 214 β decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of Xe 124 , representing a noteworthy new background. After removal of artificial signal-like events injected into the dataset to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses 9 GeV / c 2 . The strongest SI exclusion set is 2.2 × 10 48 cm 2 at the 90% confidence level and the best SI median sensitivity achieved is 5.1 × 10 48 cm 2 , both for a mass of 40 GeV / c 2 . Published by the American Physical Society 2025

Flow and thermal modelling of the argon volume in the DarkSide-20k TPC

Journal of Instrumentation IOP Publishing 20:06 (2025) P06046

Authors:

F Acerbi, P Adhikari, P Agnes, I Ahmad, S Albergo, IF Albuquerque, T Alexander, AK Alton, P Amaudruz, M Angiolilli, E Aprile, M Atzori Corona, DJ Auty, M Ave, IC Avetisov, O Azzolini, HO Back, Z Balmforth, A Barrado Olmedo, P Barrillon, G Batignani, P Bhowmick, M Bloem, S Blua

Abstract:

The DarkSide-20k dark matter experiment, currently under construction at LNGS, features a dual-phase time projection chamber (TPC) with a ∼ 50 t argon target from an underground well. At this scale, it is crucial to optimise the argon flow pattern for efficient target purification and for fast distribution of internal gaseous calibration sources with lifetimes of the order of hours. To this end, we have performed computational fluid dynamics simulations and heat transfer calculations. The residence time distribution shows that the detector is well-mixed on time-scales of the turnover time (∼ 40 d). Notably, simulations show that despite a two-order-of-magnitude difference between the turnover time and the half-life of 83mKr of 1.83 h, source atoms have the highest probability to reach the centre of the TPC 13 min after their injection, allowing for a homogeneous distribution before undergoing radioactive decay. We further analyse the thermal aspects of dual-phase operation and define the requirements for the formation of a stable gas pocket on top of the liquid. We find a best-estimate value for the heat transfer rate at the liquid-gas interface of 62 W with an upper limit of 144 W and a minimum gas pocket inlet temperature of 89 K to avoid condensation on the acrylic anode. This study also informs the placement of liquid inlets and outlets in the TPC. The presented techniques are widely applicable to other large-scale, noble-liquid detectors.

First Constraint on Atmospheric Millicharged Particles with the LUX-ZEPLIN Experiment

Physical Review Letters American Physical Society (APS) 134:24 (2025) 241802

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, F Alder, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, A Baker, S Balashov, J Bang, JW Bargemann, EE Barillier, D Bauer, K Beattie, T Benson, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, E Bishop, GM Blockinger, B Boxer, CAJ Brew, P Brás, S Burdin, M Buuck, MC Carmona-Benitez, M Carter, A Chawla, H Chen, JJ Cherwinka, YT Chin, NI Chott, MV Converse, R Coronel, A Cottle, G Cox, D Curran, CE Dahl, I Darlington, S Dave, A David, J Delgaudio, S Dey, L de Viveiros, L Di Felice, C Ding, JEY Dobson, E Druszkiewicz, S Dubey, SR Eriksen, A Fan, S Fayer, NM Fearon, N Fieldhouse, S Fiorucci, H Flaecher, ED Fraser, TMA Fruth, RJ Gaitskell, A Geffre, J Genovesi, C Ghag, A Ghosh, R Gibbons, S Gokhale, J Green, MGD van der Grinten, JJ Haiston, CR Hall, TJ Hall, S Han, E Hartigan-O’Connor, SJ Haselschwardt, MA Hernandez, SA Hertel, G Heuermann, GJ Homenides, M Horn, DQ Huang, D Hunt, E Jacquet, RS James, J Johnson, AC Kaboth, AC Kamaha, M Kannichankandy, D Khaitan, A Khazov, I Khurana, J Kim, YD Kim, J Kingston, R Kirk, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, VA Kudryavtsev, C Lawes, DS Leonard, KT Lesko, C Levy, J Lin, A Lindote, WH Lippincott, MI Lopes, W Lorenzon, C Lu, S Luitz, PA Majewski, A Manalaysay, RL Mannino, C Maupin, ME McCarthy, G McDowell, DN McKinsey, J McLaughlin, JB McLaughlin, R McMonigle, E Mizrachi, A Monte, ME Monzani, JD Morales Mendoza, E Morrison, BJ Mount, M Murdy, A St J Murphy, A Naylor, HN Nelson, F Neves, A Nguyen, CL O’Brien, I Olcina, KC Oliver-Mallory, J Orpwood, KY Oyulmaz, KJ Palladino, J Palmer, NJ Pannifer, N Parveen, SJ Patton, B Penning, G Pereira, E Perry, T Pershing, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, A Richards, Q Riffard, GRC Rischbieter, E Ritchey, HS Riyat, R Rosero, T Rushton, D Rynders, D Santone, ABMR Sazzad, RW Schnee, G Sehr, B Shafer, S Shaw, T Shutt, JJ Silk, C Silva, G Sinev, J Siniscalco, R Smith, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, M Szydagis, DR Tiedt, M Timalsina, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, A Usón, A Vacheret, AC Vaitkus, O Valentino, V Velan, A Wang, JJ Wang, Y Wang, JR Watson, L Weeldreyer, TJ Whitis, K Wild, M Williams, WJ Wisniewski, L Wolf, FLH Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, J Xu, Y Xu, M Yeh, D Yeum, W Zha, H Zhang, EA Zweig

New Constraints on Cosmic Ray-Boosted Dark Matter from the LUX-ZEPLIN Experiment

Physical Review Letters American Physical Society (APS) 134:24 (2025) 241801

Authors:

J Aalbers, DS Akerib, AK Al Musalhi, F Alder, CS Amarasinghe, A Ames, TJ Anderson, N Angelides, HM Araújo, JE Armstrong, M Arthurs, A Baker, S Balashov, J Bang, JW Bargemann, EE Barillier, K Beattie, T Benson, A Bhatti, A Biekert, TP Biesiadzinski, HJ Birch, E Bishop, GM Blockinger, B Boxer, CAJ Brew, P Brás, S Burdin, M Buuck, MC Carmona-Benitez, M Carter, A Chawla, H Chen, JJ Cherwinka, YT Chin, NI Chott, MV Converse, R Coronel, A Cottle, G Cox, D Curran, CE Dahl, I Darlington, S Dave, A David, J Delgaudio, S Dey, L de Viveiros, L Di Felice, C Ding, JEY Dobson, E Druszkiewicz, S Dubey, SR Eriksen, A Fan, NM Fearon, N Fieldhouse, S Fiorucci, H Flaecher, ED Fraser, TMA Fruth, RJ Gaitskell, A Geffre, J Genovesi, C Ghag, R Gibbons, S Gokhale, J Green, MGD van der Grinten, JJ Haiston, CR Hall, T Hall, S Han, E Hartigan-O’Connor, SJ Haselschwardt, MA Hernandez, SA Hertel, G Heuermann, GJ Homenides, M Horn, DQ Huang, D Hunt, E Jacquet, RS James, MK Kannichankandy, AC Kaboth, AC Kamaha, D Khaitan, A Khazov, J Kim, YD Kim, J Kingston, R Kirk, D Kodroff, L Korley, EV Korolkova, H Kraus, S Kravitz, L Kreczko, VA Kudryavtsev, C Lawes, DS Leonard, KT Lesko, C Levy, J Lin, A Lindote, WH Lippincott, MI Lopes, W Lorenzon, C Lu, S Luitz, PA Majewski, A Manalaysay, RL Mannino, C Maupin, ME McCarthy, G McDowell, DN McKinsey, J McLaughlin, JB McLaughlin, R McMonigle, E Mizrachi, ME Monzani, E Morrison, BJ Mount, M Murdy, A St J Murphy, HN Nelson, F Neves, A Nguyen, CL O’Brien, I Olcina, KC Oliver-Mallory, J Orpwood, KY Oyulmaz, KJ Palladino, J Palmer, NJ Pannifer, N Parveen, SJ Patton, B Penning, G Pereira, E Perry, T Pershing, A Piepke, Y Qie, J Reichenbacher, CA Rhyne, GRC Rischbieter, E Ritchey, HS Riyat, R Rosero, T Rushton, D Rynders, D Santone, ABMR Sazzad, RW Schnee, G Sehr, B Shafer, S Shaw, K Shi, T Shutt, JJ Silk, C Silva, J Siniscalco, R Smith, VN Solovov, P Sorensen, J Soria, I Stancu, A Stevens, K Stifter, B Suerfu, TJ Sumner, A Swain, M Szydagis, DR Tiedt, M Timalsina, Z Tong, DR Tovey, J Tranter, M Trask, M Tripathi, A Usón, AC Vaitkus, O Valentino, V Velan, A Wang, JJ Wang, Y Wang, JR Watson, L Weeldreyer, TJ Whitis, K Wild, M Williams, WJ Wisniewski, L Wolf, FLH Wolfs, S Woodford, D Woodward, CJ Wright, Q Xia, J Xu, Y Xu, M Yeh, D Yeum, W Zha, H Zhang