Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure
(2016)
Strain in epitaxial MnSi films on Si(111) in the thick film limit studied by polarization-dependent extended x-ray absorption fine structure
Physical Review B - Condensed Matter and Materials Physics American Physical Society (2016)
Abstract:
We report a study of the strain state of epitaxial MnSi films on Si(111) substrates in the thick film limit (100-500 A) as a function of film thickness using polarization-dependent extended x-ray absorption fine structure (EXAFS). All films investigated are phase-pure and of high quality with a sharp interface between MnSi and Si. The investigated MnSi films are in a thickness regime where the magnetic transition temperature Tc assumes a thickness-independent enhanced value of ≥43 K as compared with that of bulk MnSi, where Tc ≈ 29 K. A detailed refinement of the EXAFS data reveals that the Mn positions are unchanged, whereas the Si positions vary along the out-of-plane [111]-direction, alternating in orientation from unit cell to unit cell. Thus, for thick MnSi films, the unit cell volume is essentially that of bulk MnSi — except in the vicinity of the interface with the Si substrate (thin film limit). In view of the enhanced magnetic transition temperature we conclude that the mere presence of the interface, and its specific characteristics, strongly affects the magnetic properties of the entire MnSi film, even far from the interface. Our analysis provides invaluable information about the local strain at the MnSi/Si(111) interface. The presented methodology of polarization dependent EXAFS can also be employed to investigate the local structure of other interesting interfaces.Imaging and manipulation of skyrmion lattice domains in Cu2OSeO3
Applied Physics Letters American Institute of Physics 109 (2016) 192406
Abstract:
Nanoscale chiral skyrmions in noncentrosymmetric helimagnets are promising binary state variables in highdensity, low-energy nonvolatile memory. Nevertheless, they normally appear in an ordered, single-domain lattice phase, which makes it difficult to write information unless they are spatially broken up into smaller units, each representing a bit. Thus, the formation and manipulation of skyrmion lattice domains is a prerequisite for memory applications. Here, using an imaging technique based on resonant magnetic x-ray diffraction, we demonstrate the mapping and manipulation of skyrmion lattice domains in Cu2OSeO3. The material is particularly interesting for applications owing to its insulating nature, allowing for electric fielddriven domain manipulation.Step-flow growth of Bi2Te3 nanobelts
Crystal Growth and Design American Chemical Society 16:12 (2016) 6961-6966
Abstract:
Understanding the growth mechanism of nanostructures is key to tailoring their properties. Many compounds form nanowires following the vapor-liquid-solid (VLS) growth mechanism, and the growth of Bi2Te3 nanobelts was also explained following the VLS route. Here, we present another growth mechanism of Bi2Te3 nano- and sub-micron belts and ribbons. The samples were grown by physical vapor transport from Bi2Te3 precursor using TiO2 nanoparticles as catalyst, and analyzed by scanning electron microscopy and scanning transmission electron microscopy. The growth starts from a Te-rich cluster, and proceeds via a thin, tip-catalyzed primary layer growing in the [110] direction. The primary layer serves as a support for subsequent step-flow growth. The precursor predominantly absorbs on the substrate and reaches the belt by migration from the base to the tip. Terrace edges pose energy barriers that enhance the growth rate of secondary layers compared to the primary layer. Broadening of the sidewalls is commonly observed and leads to triangular voids that can even result in a branching of the growing belts. Step-flow growth of Bi2Te3 sub-micron belts is different from the spiral-like growth mode of Bi2Te3 thin films, and an important step towards the growth of layered topological insulator nanostructures.Spin pumping in magnetic trilayer structures with an MgO barrier
Scientific Reports Nature Publishing Group 6 (2016) 35582