Bending skyrmion strings under two-dimensional thermal gradients

Nature Communications Nature Research 15:1 (2024) 4860

Authors:

Kejing Ran, Wancong Tan, Xinyu Sun, Yizhou Liu, Robert M Dalgliesh, Nina-Juliane Steinke, Gerrit van der Laan, Sean Langridge, Thorsten Hesjedal, Shilei Zhang

Abstract:

Magnetic skyrmions are topologically protected magnetization vortices that form three-dimensional strings in chiral magnets. With the manipulation of skyrmions being key to their application in devices, the focus has been on their dynamics within the vortex plane, while the dynamical control of skyrmion strings remained uncharted territory. Here, we report the effective bending of three-dimensional skyrmion strings in the chiral magnet MnSi in orthogonal thermal gradients using small angle neutron scattering. This dynamical behavior is achieved by exploiting the temperature-dependent skyrmion Hall effect, which is unexpected in the framework of skyrmion dynamics. We thus provide experimental evidence for the existence of magnon friction, which was recently proposed to be a key ingredient for capturing skyrmion dynamics, requiring a modification of Thiele’s equation. Our work therefore suggests the existence of an extra degree of freedom for the manipulation of three-dimensional skyrmions.

Magnetization dynamics driven by displacement currents across a magnetic tunnel junction

(2024)

Authors:

Safeer Chenattukuzhiyil, Paul S Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E Hueso, Robert J Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal

Control of Charge‐Spin Interconversion in van der Waals Heterostructures with Chiral Charge Density Waves

Advanced Materials Wiley 36:18 (2024) e2310768

Authors:

Zhendong Chi, Seungjun Lee, Haozhe Yang, Eoin Dolan, CK Safeer, Josep Ingla‐Aynés, Franz Herling, Nerea Ontoso, Beatriz Martín‐García, Marco Gobbi, Tony Low, Luis E Hueso, Fèlix Casanova

Depth-dependent magnetic crossover in a room-temperature skyrmion-hosting multilayer

Physical Review B American Physical Society (APS) 109:13 (2024) 134423

Authors:

Tj Hicken, Mn Wilson, Z Salman, Sl Zhang, Sjr Holt, T Prokscha, A Suter, Fl Pratt, G van der Laan, T Hesjedal, T Lancaster

Abstract:

Skyrmion-hosting multilayer stacks are promising avenues for applications, although little is known about the depth dependence of the magnetism. We address this by reporting the results of circular dichroic resonant elastic x-ray scattering (CD-REXS), micromagnetic simulations, and low-energy muon-spin rotation (LE-μ+SR) measurements on a stack comprising [Ta/CoFeB/MgO]16/Ta on a Si substrate. Energy-dependent CD-REXS shows a continuous, monotonic evolution of the domain-wall helicity angle with incident energy, consistent with a three-dimensional hybrid domain-wall-like structure that changes from Néel-like near the surface to Bloch-like deeper within the sample. LE-μ+SR reveals that the magnetic field distribution in the trilayers near the surface of the stack is distinct from that in trilayers deeper within the sample. Our micromagnetic simulations support a quantitative analysis of the μ+SR results. By increasing the applied magnetic field, we find a reduction in the volume occupied by domain walls at all depths, consistent with a crossover into a region dominated by skyrmions above approximately 180 mT.

Strain‐Modulated Ferromagnetism at an Intrinsic van der Waals Heterojunction

Advanced Functional Materials Wiley (2024)

Authors:

Ryuji Fujita, Gautam Gurung, Mohamad‐Assaad Mawass, Alevtina Smekhova, Florian Kronast, Alexander Kang‐Jun Toh, Anjan Soumyanarayanan, Pin Ho, Angadjit Singh, Emily Heppell, Dirk Backes, Francesco Maccherozzi, Kenji Watanabe, Takashi Taniguchi, Daniel A Mayoh, Geetha Balakrishnan, Gerrit van der Laan, Thorsten Hesjedal

Abstract:

AbstractThe van der Waals interaction enables atomically thin layers of exfoliated 2D materials to be interfaced in heterostructures with relaxed epitaxy conditions, however, the ability to exfoliate and freely stack layers without any strain or structural modification is by no means ubiquitous. In this work, the piezoelectricity of the exfoliated van der Waals piezoelectric α‐In2Se3 is utilized to modify the magnetic properties of exfoliated Fe3GeTe2, a van der Waals ferromagnet, resulting in increased domain wall density, reductions in the transition temperature ranging from 5 to 20 K, and an increase in the magnetic coercivity. Structural modifications at the atomic level are corroborated by a comparison to a graphite/α‐In2Se3 heterostructure, for which a decrease in the Tuinstra‐Koenig ratio is found. Magnetostrictive ferromagnetic domains are also observed, which may contribute to the enhanced magnetic coercivity. Density functional theory calculations and atomistic spin dynamic simulations show that the Fe3GeTe2 layer is compressively strained by 0.4%, reducing the exchange stiffness and magnetic anisotropy. The incorporation of α‐In2Se3 may be a general strategy to electrostatically strain interfaces within the paradigm of hexagonal boron nitride‐encapsulated heterostructures, for which the atomic flatness is both an intrinsic property and paramount requirement for 2D van der Waals heterojunctions.