Multiwavelength consensus of large-scale linear bias
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 493:1 (2020) 747-764
The connection between the UV/optical and X-ray emission in the neutron star low-mass X-ray binary Aql X-1
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 493:1 (2020) 940-951
The rest-frame UV luminosity function at z≃4 : a significant contribution of AGN to the bright-end of the galaxy population
Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 1771-1783
Abstract:
We measure the rest-frame UV luminosity function (LF) at z ∼ 4 self-consistently over a wide range in absolute magnitude (−27 . MUV . −20). The LF is measured with 46,904 sources selected using a photometric redshift approach over ∼ 6 deg2 of the combined COSMOS and XMM-LSS fields. We simultaneously fit for both AGN and galaxy LFs using a combination of Schechter or Double Power Law (DPL) functions alongside a single power law for the faint-end slope of the AGN LF. We find a lack of evolution in the shape of the bright-end of the LBG component when compared to other studies at z ' 5 and evolutionary recipes for the UV LF. Regardless of whether the LBG LF is fit with a Schechter function or DPL, AGN are found to dominate at MUV < −23.5. We measure a steep faint-end slope of the AGN LF with αAGN = −2.09+0.35 −0.38 (−1.66+0.29 −0.58) when fit alongside a Schechter function (DPL) for the galaxies. Our results suggest that if AGN are morphologically selected it results in a bias to lower number densities. Only by considering the full galaxy population over the transition region from AGN to LBG domination can an accurate measurement of the total LF be attained.Uncovering the orbital dynamics of stars hidden inside their powerful winds: application to $η$ Carinae and RMC 140
Monthly Notices of the Royal Astronomical Society Oxford University Press 494:1 (2020) 17-35
Abstract:
Determining accurate orbits of binary stars with powerful winds is challenging. The dense outflows increase the effective photospheric radius, precluding direct observation of the Keplerian motion; instead the observables are broad lines emitted over large radii in the stellar wind. Our analysis reveals strong, systematic discrepancies between the radial velocities extracted from different spectral lines: the more extended a line's emission region, the greater the departure from the true orbital motion. To overcome these challenges, we formulate a novel semi-analytical model which encapsulates both the star's orbital motion and the propagation of the wind. The model encodes the integrated velocity field of the out-flowing gas in terms of a convolution of past motion due to the finite flow speed of the wind. We test this model on two binary systems. (1), for the extreme case $\eta$ Carinae, in which the effects are most prominent, we are able to fit the model to 10 Balmer lines from H-alpha to H-kappa concurrently with a single set of orbital parameters: time of periastron $T_{0}=2454848$ (JD), eccentricity $e=0.91$, semi-amplitude $k=69$ km/s and longitude of periastron $\omega=241^\circ$. (2) for a more typical case, the Wolf-Rayet star in RMC 140, we demonstrate that for commonly used lines, such as He II and N III/IV/V, we expect deviations between the Keplerian orbit and the predicted radial velocities. Our study indicates that corrective modelling, such as presented here, is necessary in order to identify a consistent set of orbital parameters, independent of the emission line used, especially for future high accuracy work.Stratified disc wind models for the AGN broad-line region: ultraviolet, optical, and X-ray properties
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 492:4 (2020) 5540-5560