Evidence for inverse Compton scattering in high-redshift Lyman-break galaxies
Monthly Notices of the Royal Astronomical Society (2025) staf1505
Abstract:
Radio continuum emission provides a unique opportunity to study star-formation unbiased by dust obscuration. However, if radio observations are to be used to accurately trace star-formation to high redshifts, it is crucial that the physical processes which affect the radio emission from star-forming galaxies are well understood. While inverse Compton (IC) losses from the cosmic microwave background (CMB) are negligible in the local universe, the rapid increase in the strength of the CMB energy density with redshift [∼(1 + z)4] means that this effect becomes increasingly important at z ≳ 3. Using a sample of ∼200, 000 high-redshift (3 < z < 5) Lyman-break galaxies selected in the rest-frame ultraviolet (UV), we have stacked radio observations from the MIGHTEE survey to estimate their 1.4-GHz flux densities. We find that for a given rest-frame UV magnitude, the 1.4-GHz flux density and luminosity decrease with redshift. We compare these results to the theoretical predicted effect of energy losses due to inverse Compton scattering off the CMB, and find that the observed decrease is consistent with this explanation. We discuss other possible causes for the observed decrease in radio flux density with redshift at a given UV magnitude, such as a top-heavy initial mass function at high redshift or an evolution of the dust properties, but suggest that inverse Compton scattering is the most compelling explanation.A Diagnostic Kit for Optical Emission Lines Shaped by Accretion Disc Winds
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1450
Abstract:
Erratum: “A Novel Technosignature Search in the Breakthrough Listen Green Bank Telescope Archive” (2025, AJ, 169, 222)
The Astronomical Journal American Astronomical Society 170:3 (2025) 194
The peculiar hard state behaviour of the black hole X-ray binary Swift J1727.8−1613
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 1803-1816
Abstract:
Tracking the correlation between radio and X-ray luminosities during black hole X-ray binary outbursts is a key diagnostic of the coupling between accretion inflows (traced by X-rays) and relativistic jet outflows (traced by radio). We present the radio–X-ray correlation of the black hole low-mass X-ray binary Swift J1727.8–1613 during its 2023–2024 outburst. Our observations span a broad dynamic range, covering 4 orders of magnitude in radio luminosity and 6.5 in X-ray luminosity. This source follows an unusually radio-quiet track, exhibiting significantly lower radio luminosities at a given X-ray luminosity than both the standard (radio-loud) track and most previously known radio-quiet systems. Across most of the considered distance range (–4.3 kpc), Swift J1727.8–1613 appears to be the most radio-quiet black hole binary identified to date. For distances kpc, while Swift J1727 becomes comparable to one other extremely radio-quiet system, its peak X-ray luminosity ( erg s) exceeds that of any previously reported hard-state black hole low-mass X-ray binary, emphasizing the extremity of this outburst. Additionally, for the first time in a radio-quiet system, we identify the onset of X-ray spectral softening to coincide with a change in trajectory through the radio–X-ray plane. We assess several proposed explanations for radio-quiet behaviour in black hole systems in light of this data set. As with other such sources, however, no single mechanism fully accounts for the observed properties, highlighting the importance of regular monitoring and the value of comprehensive (quasi-)simultaneous data-sets.New Metrics for Identifying Variables and Transients in Large Astronomical Surveys
(2025)