Discovery of a z ∼ 0.8 ultra steep spectrum radio halo in the MeerKAT-South Pole Telescope Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:1 (2025) staf2022

Authors:

Isaac S Magolego, Roger P Deane, Kshitij Thorat, Ian Heywood, William Rasakanya, Manuel Aravena, Lindsey E Bleem, Maria G Campitiello, Kedar A Phadke, Justin Spilker, Joaquin D Vieira, Dazhi Zhou, Bradford A Benson, Scott Chapman, Ana Posses, Tim Schrabback, Antony Stark, David Vizgan

Abstract:

ABSTRACT Radio haloes are diffuse synchrotron sources that trace the turbulent intracluster medium (ICM) of galaxy clusters. However, their origin remains unknown. Two main formation models have been proposed: the hadronic model, in which relativistic electrons are continuously injected by cosmic-ray protons; and the leptonic turbulent re-acceleration model, where cluster mergers re-energize electrons in situ. A key discriminant between the two models would be the existence of ultra-steep spectrum radio haloes (USSRHs), which can only be produced through turbulent re-acceleration. Here, we report the discovery of an USSRH in the galaxy cluster SPT-CLJ2337–5942 at redshift $z = 0.78$ in the MeerKAT-South Pole Telescope 100 deg$^2$ UHF (0.58–1.09 GHz) survey. This discovery is noteworthy for two primary reasons: it is the highest redshift USSRH system to date; and the close correspondence of the radio emission with the thermal ICM as traced by Chandra X-ray observations, further supporting the leptonic re-acceleration model. The halo is underluminous for its mass, consistent with a minor merger origin, which produces steep-spectrum, lower luminosity haloes. This result demonstrates the power of wide-field, high-fidelity, low-frequency ($\lesssim 1$ GHz) surveys like the MeerKAT-SPT 100 deg$^2$ programme to probe the origin and evolution of radio haloes over cosmic time, ahead of the Square Kilometre Array.

The critical role of clumping in line-driven disc winds

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf2183

Authors:

Amin Mosallanezhad, Christian Knigge, Nicolas Scepi, Knox S Long, James H Matthews, Stuart A Sim, Austen Wallis

Abstract:

Abstract Radiation pressure on spectral lines is a promising mechanism for powering disc winds from accreting white dwarfs (AWDs) and active galactic nuclei (AGN). However, in radiation-hydrodynamic simulations, overionization reduces line opacity and quenches the line force, which suppresses outflows. Here, we show that small-scale clumping can resolve this problem. Adopting the microclumping approximation, our new simulations demonstrate that even modest volume filling factors (fV ∼ 0.1–0.01) can dramatically increase the wind mass-loss rate by lowering its ionization state—raising $\dot{M}_{\rm wind}$ and yielding $\dot{M}_{\rm wind}/\dot{M}_{\rm acc}\!\gtrsim \!10^{-4}$ for such modest filling factors. Clumpy wind models produce the UV resonance lines that are absent from smooth wind models. They can also reprocess a significant fraction of the disc luminosity and thus dramatically modify the broad-band optical/UV SED. Given that theory and observations indicate that disc winds are intrinsically inhomogeneous, clumping offers a physically motivated solution. Together, these results provide the first robust, self-consistent demonstration that clumping can reconcile line-driven wind theory with observations across AWDs and AGNs.

MeerKAT observations of white dwarf pulsars

Sissa Medialab Srl (2025) 061

Authors:

Emil Meintjes, PA Woudt, M Geyer, I Heywood, V Prayag, B Stappers, D Ah Buckley, M Caleb, R Fender, I Pelisoli

A MeerKAT view of the parsec-scale jets in the black-hole X-ray binary GRS 1758–258

Astronomy & Astrophysics EDP Sciences 704 (2025) A239-A239

Authors:

I Mariani, SE Motta, P Atri, JH Matthews, RP Fender, J Martí, PL Luque-Escamilla, I Heywood

Abstract:

Context. Jets from accreting black-hole (BH) X-ray binary (XRB) systems are powerful outflows that release a large fraction of the accretion energy to the surrounding environment, providing a feedback mechanism that may alter the properties of the interstellar medium (ISM). Studying accretion processes alongside their feedback on the environment may enable one to estimate the matter and energy input and output around accreting BHs. Aims. We aim to study the extended jet structures around the BH XRB GRS 1758–258. First observed in VLA data, these parsec-scale jet structures originate from jet-ISM interaction, and are characterised by a peculiar Z-shape morphology. Methods. Using the MeerKAT radio telescope we observed GRS 1758–258 in the L band for a total exposure of 7 hr. Following a calorimetry-based method originally proposed for active galactic nuclei (AGN) and later applied to X-ray binaries, we estimated the properties of the jets and of the surrounding ISM. Results. We detect a jet and a counter-jet terminating in bow-shock structures induced by their interaction with the ISM. We identified both synchrotron and bremsstrahlung emitting regions within the northern lobe, while the southern lobe is dominated by thermal emission. We measured an ISM particle density of between 10 and 40 cm −3 across both the northern and southern jets, slightly lower in the northern region. The estimated ages of the two jet sides range from 6 to 51 kyr, with the northern jet seemingly younger than the southern one. The time-averaged transferred jet energy for both jets falls between 4.4 × 10 33 and 3.3 × 10 36 erg s −1 , with slight differences between the northern and southern jets ascribed to different local environmental conditions. Comparing the new MeerKAT with archival VLA observations, we measured a proper motion of a portion of the northern jet of ∼130 mas/year. Conclusions. Jet-ISM interaction structures on both sides of GRS 1758–258 reveal different local ISM properties. The comparison between the morphology of these structures and those from other XRBs indicates that the lobes in GRS 1758–258 may be younger and may result from a number of jet activity phases. The estimated time-averaged energy transferred to the environment is slightly lower than, but comparable to, that observed in other XRBs, consistent with the younger age of the lobes in GRS 1758–258 relative to those of other systems.

Semiempirical constraints on the HI mass function of star-forming galaxies and Ω HI at z ∼ 0.37 from interferometric surveys

Astronomy & Astrophysics EDP Sciences 704 (2025) A152-A152

Authors:

F Sinigaglia, A Bianchetti, G Rodighiero, L Mayer, M Dessauges-Zavadsky, E Elson, M Vaccari, MJ Jarvis

Abstract:

Context. The H I mass function (HIMF) is a crucial tool for understanding the evolution of the H I content in galaxies over cosmic time and, hence, to constraining both the baryon cycle in galaxy evolution and the reionization history of the Universe. Aims. We aim to derive semiempirical constraints at z  ∼ 0.37 by combining literature results on the stellar mass function from optical surveys with recent findings on the M HI  −  M scaling relation derived via spectral stacking analysis applied to 21 cm line interferometric data from the MIGHTEE and CHILES surveys, conducted with the MeerKAT and VLA radio telescopes, respectively. Methods. We drew synthetic stellar mass samples directly from the publicly available results underlying the analysis of the COSMOS2020 galaxy photometric sample. We then converted M into M HI using analytical fitting functions to the data points from H I stacking. We next fit a Schechter function to the median HIMF from all the samples via Monte Carlo Markov chains. We finally derived the posterior distribution for Ω HI by integrating the models for the HIMF built from the posteriors samples of the Schechter parameters. Results. We find a deviation of the HIMF at z  ∼ 0.37 from the results at z  ∼ 0 from the ALFALFA survey and at z  ∼ 1 from uGMRT data. Our results for Ω HI are in broad agreement with other literature results and follow the overall trend on Ω HI as a function of redshift. The derived value Ω HI = (7.02 +0.59 −0.52 ) × 10 −4 at z  ∼ 0.37 from the combined analysis deviates by ∼2.9 σ from the ALFALFA result at z  ∼ 0. Conclusions. Our findings regarding the HIMF and Ω HI derived from deep, state-of-the-art interferometric surveys differ from previous literature results at z  ∼ 0 and z  ∼ 1. We are unable to confirm at this stage whether these differences are due to cosmic evolution consistent with a smooth transition of the H I content of galaxies over the last 8 Gyr or due to selection biases and systematics.