Cosmic rays, gamma rays and neutrinos from discrete black hole X-ray binary ejecta

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag080

Authors:

Nicolas J Bacon, Alex J Cooper, Dimitrios Kantzas, James H Matthews, Rob Fender

Abstract:

Abstract The origin of cosmic rays from outside the Solar system are unknown, as they are deflected by the interstellar magnetic field. Supernova remnants are the main candidate for cosmic rays up to PeV energies but due to lack of evidence, they cannot be concluded as the sources of the most energetic Galactic CRs. We investigate discrete ejecta produced in state transitions of black hole X-ray binary systems as a potential source of cosmic rays, motivated by recent >100 TeV γ-ray detections by LHAASO. Starting from MAXI J1820+070, we examine the multi-wavelength observations and find that efficient particle acceleration may take place (i.e. into a robust power-law), up to ∼2 × 1016μ−1/2 eV, where μ is the ratio of particle energy to magnetic energy. From these calculations, we estimate the global contribution of ejecta to the entire Galactic spectrum to be $\sim 1~{{\ \rm per\ cent}}$, with the cosmic ray contribution rising to $\sim 5~{{\ \rm per\ cent}}$ at PeV energies, assuming roughly equal energy in non-thermal protons, non-thermal electrons and magnetic fields. In addition, we calculate associated γ-ray and neutrino spectra of the MAXI J1820+070 ejecta to investigate new detection methods with CTAO, which provide strong constraints on initial ejecta size of order 107 Schwarzschild radii (10−5 pc) assuming a period of adiabatic expansion.

Exploring the quasar disc-wind-jet connection with LoTSS and SDSS

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2026) stag065

Authors:

Charlotte L Jackson, James H Matthews, Imogen H Whittam, Matt J Jarvis, Matthew J Temple, Amy L Rankine, Paul C Hewett

Abstract:

Abstract We investigate the relationship between disc winds, radio jets, accretion rates and black hole masses of a sample of ∼100k quasars at z ≈ 2. Combining spectra from the 17th data release of the Sloan Digital Sky Survey (SDSS) with radio fluxes from the 2nd data release of the Low Frequency ARray (LOFAR) Two-Meter Sky Survey (LoTSS), we statistically characterise a radio loud and radio quiet population using a two-component Gaussian Mixture model, and perform population matching in black hole mass and Eddington fraction. We determine how the fraction of radio loud sources changes across this parameter space, finding that jets are most efficiently produced in quasars with either a very massive central black hole (MBH > 109M⊙) or one that is rapidly accreting (λEdd > 0.3). We also show that there are differences in the blueshift of the $\textrm {C}\, \rm \small {IV}$ λ1549Å line and the equivalent width of the $\rm {He}\, \rm \small {II}$ λ1640Å line in radio loud and radio quiet quasars that persist even after accounting for differences in the mass and accretion rate of the central black hole. Generally, we find an anti-correlation between the inferred presence of disc winds and jets, which we suggest is mediated by differences in the quasars’ spectral energy distributions. The latter result is shown through the close coupling between tracers of wind kinematics and the ionising flux– which holds for both radio loud and radio quiet sources, despite differences between their emission line properties– and is hinted at by a different Baldwin effect in the two populations.

Discovery of a z ∼ 0.8 ultra steep spectrum radio halo in the MeerKAT-South Pole Telescope Survey

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 545:1 (2025) staf2022

Authors:

Isaac S Magolego, Roger P Deane, Kshitij Thorat, Ian Heywood, William Rasakanya, Manuel Aravena, Lindsey E Bleem, Maria G Campitiello, Kedar A Phadke, Justin Spilker, Joaquin D Vieira, Dazhi Zhou, Bradford A Benson, Scott Chapman, Ana Posses, Tim Schrabback, Antony Stark, David Vizgan

Abstract:

ABSTRACT Radio haloes are diffuse synchrotron sources that trace the turbulent intracluster medium (ICM) of galaxy clusters. However, their origin remains unknown. Two main formation models have been proposed: the hadronic model, in which relativistic electrons are continuously injected by cosmic-ray protons; and the leptonic turbulent re-acceleration model, where cluster mergers re-energize electrons in situ. A key discriminant between the two models would be the existence of ultra-steep spectrum radio haloes (USSRHs), which can only be produced through turbulent re-acceleration. Here, we report the discovery of an USSRH in the galaxy cluster SPT-CLJ2337–5942 at redshift $z = 0.78$ in the MeerKAT-South Pole Telescope 100 deg$^2$ UHF (0.58–1.09 GHz) survey. This discovery is noteworthy for two primary reasons: it is the highest redshift USSRH system to date; and the close correspondence of the radio emission with the thermal ICM as traced by Chandra X-ray observations, further supporting the leptonic re-acceleration model. The halo is underluminous for its mass, consistent with a minor merger origin, which produces steep-spectrum, lower luminosity haloes. This result demonstrates the power of wide-field, high-fidelity, low-frequency ($\lesssim 1$ GHz) surveys like the MeerKAT-SPT 100 deg$^2$ programme to probe the origin and evolution of radio haloes over cosmic time, ahead of the Square Kilometre Array.

The critical role of clumping in line-driven disc winds

Monthly Notices of the Royal Astronomical Society Oxford University Press 545:3 (2025) staf2183

Authors:

Amin Mosallanezhad, Christian Knigge, Nicolas Scepi, Knox S Long, James H Matthews, Stuart A Sim, Austen Wallis

Abstract:

Radiation pressure on spectral lines is a promising mechanism for powering disc winds from accreting white dwarfs (AWDs) and active galactic nuclei (AGNs). However, in radiation-hydrodynamic simulations, overionization reduces line opacity and quenches the line force, which suppresses outflows. Here, we show that small-scale clumping can resolve this problem. Adopting the microclumping approximation, our new simulations demonstrate that even modest volume filling factors () can dramatically increase the wind mass-loss rate by lowering its ionization state – raising and yielding for such modest filling factors. Clumpy wind models produce the UV resonance lines that are absent from smooth wind models. They can also reprocess a significant fraction of the disc luminosity and thus dramatically modify the broad-band optical/UV SED. Given that theory and observations indicate that disc winds are intrinsically inhomogeneous, clumping offers a physically motivated solution. Together, these results provide the first robust, self-consistent demonstration that clumping can reconcile line-driven wind theory with observations across AWDs and AGNs.

A 15 Mpc rotating galaxy filament at redshift z = 0.032

Monthly Notices of the Royal Astronomical Society Oxford University Press 544:4 (2025) 4306-4316

Authors:

Madalina N Tudorache, SL Jung, MJ Jarvis, I Heywood, AA Ponomareva, AA Vărăşteanu, N Maddox, T Yasin, M Glowacki

Abstract:

Understanding the cold atomic hydrogen gas (H i) within cosmic filaments has the potential to pin down the relationship between the low density gas in the cosmic web and how the galaxies that lie within it grow using this material. We report the discovery of a cosmic filament using 14 H i-selected galaxies that form a very thin elongated structure of 1.7 Mpc. These galaxies are embedded within a much larger cosmic web filament, traced by optical galaxies, that spans at least Mpc. We find that the spin axes of the H i galaxies are significantly more strongly aligned with the cosmic web filament () than cosmological simulations predict, with the optically selected galaxies showing alignment to a lesser degree (). This structure demonstrates that within the cosmic filament, the angular momentum of galaxies is closely connected to the large-scale filamentary structure. We also find strong evidence that the galaxies are orbiting around the spine of the filament, making this one of the largest rotating structures discovered thus far, and from which we can infer that there is transfer of angular momentum from the filament to the individual galaxies. The abundance of H i galaxies along the filament and the low dynamical temperature of the galaxies within the filament indicates that this filament is at an early evolutionary stage where the imprint of cosmic matter flow on galaxies has been preserved over cosmic time.